
Copyright DaPaaS Consortium 2013-2015

Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable 1.1

Open DaaS requirements, design &

architecture specification

Date: 31 January 2014

Author(s):
Marin Dimitrov, Alex Simov, Petar Kostov, Dumitru Roman,
Brian Elvesæter, Arne Berre, Rick Moynihan

Dissemination level: PU

WP: 1

Version: 1.0

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 2 / 43

Document metadata

Quality assurors and contributors

Quality assuror(s) Bill Roberts, Amanda Smith

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 10 January 2014 Outline.

0.2 16 January 2014 Initial architecture for Data Layer
and description of components.

0.3 21 January 2014 Completed state of the art
analysis for DaaS.

0.4 24 January 2014 First integrated version.

0.5 28 January 2014 Draft version ready for internal
review.

0.6 29 January 2014 Addressed review comments.

0.7 30 January 2014 Final round of review.

1.0 30 January 2014 Final formatting and layout.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 3 / 43

Executive Summary
The main goal of the DaPaaS project is to provide an integrated Data-as-a-Service (DaaS) and Platform-
as-a-Service (PaaS) environment, together with associated services, for open data, where 3rd parties
can publish and host both datasets and data-driven applications that are accessed by end-user data
consumers in a cross-platform manner.

This deliverable focuses on the DaaS aspect of the DaPaaS Platform and provides four important
outcomes related to the data management aspect of the DaPaaS platform:

1) A summary of the business requirements which the data management layer should support

2) A state-of-the-art overview of relevant solutions, technologies and standards;

3) An initial architecture design for a scalable data management and query layer; and

4) An overview of 3rd party tools which will be integrated for the data layer prototype implementation.

This deliverable is aligned and should be read in conjunction with the corresponding deliverables in WP2
(D2.1) and WP3 (D3.1). The outlined data layer design will be implemented at M12 (D1.2) and further
refined at M21 (D1.3) based on user feedback.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 4 / 43

Table of Contents
EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS .. 6

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

1 INTRODUCTION ... 9

2 REQUIREMENTS ANALYSIS ... 10

2.1 KEY ROLES IN DAPAAS ... 10
2.2 REQUIREMENTS FOR THE DATA LAYER ... 11

2.2.1 Instance Operator .. 11
2.2.2 Data Publisher ... 11
2.2.3 Application Developer .. 12
2.2.4 End-user Data Consumer .. 12

3 STATE OF THE ART OVERVIEW ... 14

3.1 DATA ACCESS ... 14
3.2 EXISTING DATA-AS-A-SERVICE SOLUTIONS .. 15

3.2.1 Azure ... 16
3.2.2 Factual ... 17
3.2.3 Socrata ... 17
3.2.4 DataMarket .. 18
3.2.5 Junar .. 20
3.2.6 PublishMyData .. 20
3.2.7 LOD2 .. 20
3.2.8 European Open Data Portal ... 21
3.2.9 Project Open Data ... 22
3.2.10 COMSODE .. 22

3.3 RELEVANT TECHNOLOGIES & STANDARDS ... 23
3.3.1 5 Star Open Data ... 23
3.3.2 CKAN ... 23
3.3.3 DCAT .. 23
3.3.4 VoID .. 24
3.3.5 CSV on the Web (W3C) .. 24
3.3.6 JSON-LD .. 24
3.3.7 OData .. 24

3.4 COMPARISON OF DAPAAS TO OTHER SOLUTIONS ... 25

4 DATA LAYER ARCHITECTURE ... 27

4.1 DATA MODEL .. 27
4.1.1 Key/Value Data ... 27
4.1.2 Tabular Data .. 27
4.1.3 RDF & Linked Data .. 27

4.2 TECHNICAL CAPABILITIES ... 27
4.2.1 RDF Storage & Access ... 28
4.2.2 Non-RDF Storage & Access ... 28
4.2.3 Full-text Search ... 28
4.2.4 Data Catalogue .. 28
4.2.5 Querying .. 28
4.2.6 Interlinking .. 28
4.2.7 Caching ... 29
4.2.8 Import / Export .. 29
4.2.9 Notifications & Statistics .. 29

4.3 NON-FUNCTIONAL ASPECTS .. 29
4.3.1 Scalability .. 29

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 5 / 43

4.3.2 User Management & Access Control .. 29
4.3.3 Availability .. 30
4.3.4 Monitoring... 30

4.4 DATA LAYER ARCHITECTURE & COMPONENTS ... 30
4.5 SUMMARY OF ADDRESSED REQUIREMENTS .. 32

5 RELEVANT TOOLS .. 34

5.1 RDF DATABASES .. 34
5.1.1 OWLIM ... 34
5.1.2 Sesame .. 35
5.1.3 Apache Jena Framework ... 36

5.2 NOSQL DATABASES ... 36
5.2.1 Cassandra .. 37
5.2.2 HBase .. 37
5.2.3 CouchBase... 38
5.2.4 Solr .. 38

5.3 RDB2RDF TOOLS ... 39
5.3.1 db2triples ... 39

5.4 PDF IMPORT TOOLS .. 39
5.4.1 Tabula .. 39

5.5 CSV IMPORT TOOLS ... 39
5.5.1 CSV-to-API ... 39
5.5.2 CSV.js ... 40
5.5.3 Mr. Data Converter ... 40

5.6 SILK FRAMEWORK ... 40

6 RECOMMENDATIONS .. 40

6.1 COMPONENTS .. 41
6.2 DEPLOYMENT & PROVISIONING .. 42

6.2.1 Hardware Requirements .. 42
6.2.2 Software Requirements ... 42

BIBLIOGRAPHY ... 43

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 6 / 43

List of Acronyms
API Application Programming Interface
CSV Comma Separated Values (format)
CQL Cassandra Query Language
DaaS Data-as-a-Service
DCAT Data Catalog Vocabulary
FOAF Friend of a Friend (vocabulary)
JSON JavaScript Object Notation (format)
PaaS Platform-as-a-Service

R2RML Relational to RDF Mapping Language
RDF Resource Description Framework
SLA Service Level Agreement
SOA Service Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Lan-
guage

SSH Secure Shell
VoID Vocabulary of Interlinked Datasets
XML eXtensible Markup Language

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 7 / 43

List of Figures
Figure 1: High-level architecture of the DaPaaS Platform .. 9
Figure 2: Key roles/actors in DaPaaS ... 10
Figure 3: Data exchange in JSON ... 14
Figure 4: RDF data exchange in JSON ... 15
Figure 5: Azure DataMarket architecture, (c) Microsoft ... 16
Figure 6: Socrata Open Data Server architecture, (c) Socrata ... 18
Figure 7: DataMarket options for data consumers .. 19
Figure 8: DataMarket options for data publishers ... 19
Figure 9: PublishMyData SLA guarantees .. 20
Figure 10: LOD2 lifecycle for Linked Data Management, (c) LOD2 project .. 21
Figure 11: EU Open Data Portal - applications catalogue. (c) EU Open Data Portal 22
Figure 12: OData services, (c) David Chappell ... 25
Figure 13: Data Layer Architecture .. 31
Figure 14: Sesame Architecture .. 35

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 8 / 43

List of Tables
Table 1: Description of requirements from the Instance Operator (IO) .. 11
Table 2: Description of requirements from the Data Publisher (DP) .. 11
Table 3: Description of requirements from the Application Developer (AD) .. 12
Table 4: Description of requirements from the End-Users Data Consumer (EU) 12
Table 5: DaPaaS differentiation (DaaS aspect) ... 25
Table 6: Addressed requirements by components of the Data Layer.. 32
Table 7: Initial hardware requirements .. 42
Table 8: Initial software requirements .. 42

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 9 / 43

1 Introduction
This report represents Deliverable D1.1 "Open DaaS requirements, design & architecture specification"
of the DaPaaS project. This deliverable is a result of Task T1.1 "Requirements, analysis & design of the
Open Data-as-a-Service infrastructure".

The goals of this deliverable are to provide:

 An overview of requirements related to data management & querying of the DaPaaS platform;

 A state-of-the-art analysis of related Data-as-a-Service solutions (not necessarily focussing on
Open Data);

 An initial architecture for the Data Layer prototype to be implemented by M12 of the project;

 Concrete recommendations on how the Data Layer should be implemented by integrating and
adapting existing 3rd party tools, as well as with custom new development where necessary.

In line with the overall DaPaaS Platform architecture introduced in deliverable D2.1, the DaPaaS
platform (Figure 1) is roughly divided into three layers, covering aspects related to data management,
application management and UX (including data-driven portals and mobile access). Additionally, cross-
aspects related to scalability, performance, access control and quota enforcement will have an impact
on all layers of the platform.

Figure 1: High-level architecture of the DaPaaS Platform

This deliverable focuses on the Data Layer part of the platform, and is organised as follows:

 Section 2 “Requirements Analysis” provides a summary of the key roles identified in Deliverable
2.1 (DaPaaS Project, 2014) and their respective business requirements for the DaPaaS platform.
Only the requirements which are relevant to the Data Layer are taken into consideration.

 Section 3 “State of the Art Overview” provides an analysis of existing solutions relevant to the
DaPaaS Data Layer, relevant technologies and standards, and highlights the difference of the
DaPaaS Data Layer when compared to existing solutions.

 Section 4 “Data Layer Architecture” provides a technical analysis of the data model to be
adopted for data hosting, the concrete functional and non-functional technical capabilities of the
data layer, as well as an initial architecture for data management in DaPaaS.

 Section 5 “Relevant Tools” provides an analysis of various 3rd party tools which are deemed
relevant to support the outlined technical architecture.

 Finally, Section 6 “Recommendations” provides concrete recommendations for the
implementation of the 1st Data Layer prototype due in M12.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 10 / 43

2 Requirements Analysis
The DaPaaS Deliverable D2.1 (DaPaaS Project, 2014) provides the complete list of business
requirements for all technical Work Packages (WP1-4) and the descriptions of the key roles (actors) that
will interact with the DaPaaS platform.

For the sake of completeness, this section summarises the key roles and their respective requirements
which are relevant to WP1 (DaaS) and the focus of this deliverable respectively. For further details on
the roles, the overall requirements and architecture, the reader is referred to Deliverable D2.1.

2.1 Key Roles in DaPaaS
The key roles involved in a typical DaPaaS context and their relationships within the platform, are
illustrated in Figure 2. The roles are:

 The DaPaaS Developer is responsible for implementing the DaPaaS software components and
services for the integrated DaaS and PaaS environment. During the course of the project, this
role is expected to be exclusively played by the DaPaaS consortium (although certain 3rd party
software components will be adopted and integrated into the DaPaaS platform).

 A deployed instance of DaPaaS software, i.e. the DaPaaS Platform, is operated and maintained
by an Instance Operator. During the course of the project, this role is played again by the
DaPaaS consortium, however the DaPaaS software will also be deployable by 3rd party
Instance Operators.

 The Data Publisher has the goal of publishing data on the DaPaaS Platform so that it is
available to 3rd party application developers and end user data consumers.

 The Application Developer develops data-driven applications that utilise the data hosted on
the DaPaaS Platform. The applications are deployed and hosted in the DaPaaS Platform.

 Finally, End-Users Data Consumers indirectly utilise platform hosted data through bespoke
applications deployed on either the web or native clients such as desktop and mobile.apps.

Figure 2: Key roles/actors in DaPaaS

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 11 / 43

2.2 Requirements for the Data Layer
This section provides the subset of the business requirements from the five business roles that are
relevant to the Data Layer (WP1). The complete list of all business requirements is available in
Deliverable D2.1 (DaPaaS Project, 2014).

2.2.1 Instance Operator
Table 1: Description of requirements from the Instance Operator (IO)

ID Name Brief description

IO-02 Platform performance
monitoring

The Instance Operator shall be able to monitor the performance
(e.g. storage and memory usage, bandwidth, CPU usage, etc.).

IO-03 Statistics monitoring
(users, data, apps, us-
age)

The Instance Operator shall be able to retrieve statistics about
users (e.g. number, profiles), data (e.g. number, size), apps and
usage (e.g. dataset access, data consumption, number of ser-
vice calls) as a basis for e.g. billing/invoicing for the usage of
the platform.

IO-05 Policy/quota configura-
tion and enforcement

The Instance Operator shall be able to configure usage policies,
e.g. data/apps quotas per user. The platform shall ensure en-
forcement of these policies, e.g. support deployment of applica-
tions subject to quotas and additional restrictions.

Note that requirements IO-01, IO-04 and IO-06 fall outside the scope of the Data Layer (WP1) and they
will be implemented within WP2.

2.2.2 Data Publisher
Table 2: Description of requirements from the Data Publisher (DP)

ID Name Brief description

DP-01 Dataset import The Data Publisher should have the ability to import open
data into the DaPaaS platform. The data is not restricted to
RDF / Linked Data and it may include other formats such as
CSV, JSON, etc. As part of the import process, automated
data transformations may be applied (e.g. RDB2RDF direct
mapping, CSV2RDF mappings, etc.).

DP-02 Data storage & querying The Data Publisher should have access to APIs and query
endpoints for accessing, querying and updating data stored
on the platform.

DP-03 Dataset search & explo-
ration

The Data Publisher should have the possibility to explore the
dataset catalogue & select relevant datasets.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 12 / 43

DP-04 Data interlinking The Data Publisher should have the possibility to semi-auto-
matically interlink data from different datasets. This applies
only to data which is already in RDF form.

DP-06 Dataset bookmarking &
notifications

The Data Publisher should have possibility to subscribe to
datasets and receive notifications on datasets changes.

DP-07 Dataset metadata man-
agement, statistics & ac-
cess policies

The Data Publisher should have possibility to specify
metadata, descriptions and access control policies for the
datasets.

DP-08 Data scalability The platform should include mechanisms to scale to large
data volumes.

DP-09 Data availability The platform should include mechanisms to provide high
availability of data and limited downtime.

DP-11 Secure access to plat-
form

The Data Publisher shall have secure access (e.g.
HTTPS/SSH) to the platform.

Note that some requirements fall outside the scope of WP1 and will be implemented in other Work
Packages: DP-05, DP-10, DP-12 (WP2) and DP-13 (WP4).

2.2.3 Application Developer
Table 3: Description of requirements from the Application Developer (AD)

ID Name Brief description

AD-01 Access to Data Pub-
lisher services (DP-01
– DP-13)

The Application Developer shall have access to APIs and librar-
ies to access, import, transform, store, query, etc., datasets to
be used in the development of applications. Basically the Appli-
cation Developer has similar requirements as outlined in DP-01
– DP-13. This includes also requirements for secure access to
the platform, profile management.

AD-02 Data export The Application Developer shall have the possibility to export
data in various formats.

Note that most of the business requirements from the Application Developer point of view fall outside
the scope of the Data Layer (WP1) and only AD-01 and AD-02 are the concern of this layer.

2.2.4 End-user Data Consumer
Table 4: Description of requirements from the End-Users Data Consumer (EU)

ID Name Brief description

EU-02 Search & explore datasets
and applications

End-Users shall be able to search and explore datasets
and applications available in the platform.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 13 / 43

EU-03 Datasets and applications
bookmarking and notifica-
tions

End-Users shall be able to bookmark and receive notifi-
cations (e.g. updates) of datasets and applications to
which they subscribe.

EU-05 Data export and download End-Users shall have the possibility to export data in vari-
ous formats and download data from the platform.

EU-06 High availability of data
and applications

High availability of data and apps

Note that requirements EU-01 and EU-04 fall outside the scope of the Data Layer (WP1).

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 14 / 43

3 State of the Art Overview
This section provides a summary of existing DaaS solutions as well as standards and technologies
relevant to the data management aspect of the DaPaaS platform.

3.1 Data Access
While there are numerous legacy approaches for consuming data from remote data services, datastores
or databases, such as ODBC1 , JDBC2 , RMI3 , CORBA4 , etc., modern Web architectures and data
services rely extensively on lightweight, RESTful Web service based approaches exchanging data via
standard protocols (HTTP) and formats (JSON or RDF).

A typical RESTful data service call may look like (example from the Socrata Open Data API5):

HTTP://SODA.DEMO.SOCRATA.COM/RESOURCE/EARTHQUAKES.JSON?$LIMIT=3&$ORDER=DATETIME

DESC

The results from the service call are returned to the caller application in JSON:

Figure 3: Data exchange in JSON

A more expressive way to query data services is provided by RDF databases, via Web based SPARQL
endpoints which can answer arbitrary complex SPARQL queries and return data in one of the standard
RDF serialisation forms.

1 Open Data Base Connectivity
2 Java Data Base Connectivity
3 Remote Method Invocation
4 Common Object Request Broker Architecture
5 http://dev.socrata.com/consumers/getting-started

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 15 / 43

Examples of such publicly available data service SPARQL endpoints include: FactForge 6 ,
LinkedLifeData7, European Open Data Portal8, EuroStat9, World Bank10, etc.

An example of a remote SPARQL invocation may look like:

HTTP://FACTFORGE.NET/SPARQL?QUERY=<SPARQL QUERY BODY>

The results from the service call are returned to the caller application in JSON (or other standard RDF
serialisation format):

Figure 4: RDF data exchange in JSON

3.2 Existing Data-as-a-Service Solutions
This section provides a brief overview of various solutions providing general Data-as-a-Service
functionality, or Open Data hosting / catalogues in particular.

First, we will introduce the definition of DaaS which we will adhere to throughout the document:

“Like all members of the "as a Service" (XaaS) family, DaaS is based on the concept that the product,
data in this case, can be provided on demand to the user regardless of geographic or
organizational separation of provider and consumer. Additionally, the emergence of service-oriented
architecture (SOA) has rendered the actual platform on which the data resides also irrelevant”11

We will analyse several DaaS / marketplace solutions (Azure, Factual, InfoChimps, DataMarket, Socrata)
based on features such as:

 Operating party

 Data domain

 Means for populating new content

 Query languages

6 http://factforge.net/
7 http://linkedlifedata.com/
8 https://open-data.europa.eu/en/linked-data
9 http://eurostat.linked-statistics.org/sparql
10 http://worldbank.270a.info/sparql
11 https://en.wikipedia.org/wiki/DaaS

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 16 / 43

 Data Management tools

 Data model

 Data size

 Data export means

 SLA availability

Additionally, we will provide an overview of solutions targeting Linked or Open Data in particular, such
as Socrata, the LOD2 platform, the European Open Data Portal, PublishMyData and Project Open Data.

3.2.1 Azure
The Windows Azure platform provides a marketplace for applications and data. The data marketplace12
(Microsoft Corp., 2011) currently provides access to 170 datasets13 in various categories: geo-spatial
data, US Census data, maps, weather data, D&B corporate data, etc.

The monetization model is based on charging the data consumers (per API calls). The data marketplace
itself relies on the various storage options of the Windows Azure platform and provides tools and APIs
for data publishing, analytics, metadata management, account management and pricing, monitoring and
billing, as well as a data portal for dataset exploration (Figure 5).

Figure 5: Azure DataMarket architecture, (c) Microsoft

The Azure Marketplace provides an option for data publishers to host and monetize 3rd party data via
the data marketplace platform14.

12 https://datamarket.azure.com/
13 https://datamarket.azure.com/browse/data
14 http://msdn.microsoft.com/en-us/library/hh563871.aspx

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 17 / 43

3.2.2 Factual
Factual15 provides high-quality data for more than 70 million local business and points of interest in 50
countries. Additionally, it provides a product database of over 650,000 products.

Factual used to provide the option for hosting thousands of 3rd party data sets (“Community Data”) but
as of the time of writing this analysis, this activity has been discontinued.

Data is populated by means of Web crawls, data extraction and 3rd party data services. The data model
is tabular, based on taxonomy of around 400 categories.

The pricing is based on a pay-per-use model, where data access (API calls) is monitored and billed.
The free quota is set to 10,000 API calls per day for the Global Places database, and to 500 calls for the
other datasets.

Data access is provided through a RESTful API. Simple key/value restrictions on attributes from the data
model are possible through the API. Additionally, Factual provides a set of tools for data management,
such as:

 Resolve API16 for entity mapping (reconciliation) and data de-duplication;

 GeoCoder API17 for converting geo-spatial coordinates into local street addresses and points of
interest;

 World Geographies API18 for providing extended structured information about points of interest,
including a translation in 19 languages.

3.2.3 Socrata
Socrata19 is a platform focusing on Open Data and services. The Socrata product portfolio includes:

 Open Data Portal 20 solution for organisations that need to publish Open Data. The ODP
provides functionality for data publishing & clean-up, metadata generation, data-driven portals
for data exploration and portal management;

 A hosted portal21 for Open Data;

 API Foundry22 for creating and deploying RESTful APIs on top of the data

The data hosted on the Socrata platform is accessible through the Socrata Open Data API (SODA),
which provides RESTful interface for searching and reading data in XML, JSON or RDF.

Additionally, Socrata provides an open source Socrata Open Data Server23, which includes the core
components of the Open Data Portal product (Figure 6).

15 http://www.factual.com/
16 http://www.factual.com/products/resolve
17 http://www.factual.com/products/geocode
18 http://www.factual.com/products/world-geographies
19 http://www.socrata.com/
20 http://www.socrata.com/open-data-portal/
21 https://opendata.socrata.com/
22 http://www.socrata.com/api-foundry/
23 http://open-source.socrata.com/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 18 / 43

Figure 6: Socrata Open Data Server architecture, (c) Socrata

3.2.4 DataMarket
DataMarket24 provides statistical data from almost 100 data providers25, including UN, Eurostat, World
Bank and IMF. Currently there are more than 70,000 datasets providing 350 million time series and 3
billion facts on the marketplace.

The features of the DataMarket offering include:

 Embeddable visualisations of the data

 Data export

 Live feeds for data updates

 Ability for data publishers to monetize data via the marketplace

 Custom data driven portals for publishers

 Open Data portal26

Various features are available to data consumers and data providers for free, or for price in a pay-per-
use manner (Figure 7 & Figure 8).

24 http://datamarket.com/
25 http://datamarket.com/data/
26 https://datamarket.com/topic/list/countries/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 19 / 43

Figure 7: DataMarket options for data consumers

Figure 8: DataMarket options for data publishers

The data on the marketplace is accessible through a RESTful API in JSON format.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 20 / 43

3.2.5 Junar
Junar27 is a cloud-based Open Data platform which enables government organisations and SMEs to
collect, enrich, publish and analyse open data. Data can be consumed either directly via the Junar API,
or via various visual widgets.

The Junar Website provides no details on how the data collection, enrichment, publishing or analysis
tasks are organised, so at this point it’s not possible to assess neither the technical, nor the business
potential of the platform, but DaPaaS will continue to monitor Junar’s progress.

3.2.6 PublishMyData
PublishMyData28 is Swirrl's LinkedData publishing platform. It provides a fully hosted, as-a-service
solution for organisations that need to publish Open and Linked Data. PublishMyData aims to help
publishers provide their data in ways that suit a wide variety of audiences, from lay web users to more
specialist audiences such as spreadsheet users (via CSV), and software developers.

Hosted datasets are catalogued online with DCAT and are arranged into a human browsable web-based
catalogue. Datasets are additionally accessible in programmatic and machine readable ways such as
via RESTful APIs, a SPARQL endpoint and raw data-dumps.

Similar to Socrata, Swirrl also provides the core PublishMyData platform as an open source product29.

The current list of customers for PublishMyData includes various government agencies in the UK. The
pricing30 for data publishers is set up as follows:

 One time setup fee

 Monthly subscription fee

 A traffic charge per one million API requests

 Monthly data storage charge per one million RDF triples

PublishMyData does not charge data consumers in any way (only publishers), and from the point of
view of the consumers, the data hosted on the platform is completely free for access.

PublishMyData provides a SLA of at least 99.5% for its platform (Figure 9)

Figure 9: PublishMyData SLA guarantees

3.2.7 LOD2
The LOD231 project (LOD2 Project, 2012) aims at providing an open source, integrated software stack
for managing the complete lifecycle of Linked Data, from data extraction, enrichment, interlinking, to
maintenance (Figure 10).

27 http://www.junar.com/
28 http://www.swirrl.com/publishmydata
29 https://github.com/swirrl/publish_my_data
30 http://www.swirrl.com/publishmydata#pricing
31 http://lod2.eu/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 21 / 43

Figure 10: LOD2 lifecycle for Linked Data Management, (c) LOD2 project

The LOD2 stack comprises of:

 Integrated set of software packages which can be deployed via the Debian packaging system.
At present, the LOD2 stack includes various open source components such as: Apache Stanbol
(NLP Middleware Server), the CubeViz statistical data browser, DBpedia Spotlight (Entity
Recognition and Linking), D2RQ server for RDB2RDF Mapping, DL-Learner (Machine Learning
in OWL), OntoWiki (data wiki), ORE (Knowledge Base Debugging), PoolParty taxonomy editor,
the SemMap spatial data browser, Sig.ma data browser, Sieve (Quality Assessment and
Fusion), Silk & Limes data interlinking frameworks, Virtuoso RDF database, and Valiant for
XML-to-RDF transformation.

 A centralised knowledge base (SPARQL endpoint) for integration between the various
components in the stack.

 A set of RESTful services and web applications deployed on top of the software stack
components and services.

3.2.8 European Open Data Portal
The EU Open Data Portal32 provides a metadata catalogue for Open Data hosted by various European
government agencies. The catalogue metadata is available as Linked Data via a standard SPARQL
endpoint33. Additionally, the EU Open Data Portal provides a catalogue for various applications utilising
Open Data (Figure 11)

32 https://open-data.europa.eu/en/data/
33 https://open-data.europa.eu/en/linked-data

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 22 / 43

Figure 11: EU Open Data Portal - applications catalogue. (c) EU Open Data Portal

3.2.9 Project Open Data
While technically not a Data-as-a-Service solution, Project Open Data34 is still highly relevant to the
Open Data domain, since it provides a set of open source tools, methodologies and use cases for
successfully publishing and utilising Open Data. The methodologies and recommendations provide
concrete step-by-step guide to government agencies on how to publish and catalogue open data in
machine readable formats35, and what are the recommended licenses36 for open data.

Some of the tools of interest, part of the software stack include:

 Database to API (dynamically generate RESTful APIs from a database;

 CSV to API (Dynamically generate RESTful APIs from static CSVs);

 Spatial Search;

 Catalogue Generator for automated data catalogue generation;

 JSON validators, PDF filters, and various data conversion tools ;

 DKAN – a Drupal based open data portal compliant with CKAN.

3.2.10 COMSODE
The COMSODE (Components Supporting the Open Data Exploitation) project37 is an SME-driven
research project funded under the same call as DaPaaS. It aims to develop a methodology for data
publication for data owners (e.g. public bodies) and re-users (applications of SMEs, NGOs, public
bodies, etc.), and provide an open source implementation of a data publication platform (software

34 http://project-open-data.github.io/
35 http://project-open-data.github.io/catalog/
36 http://project-open-data.github.io/open-licenses/
37 http://www.comsode.eu/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 23 / 43

components and tools). Whereas similar in goals to DaPaaS, the key differentiation is that DaPaaS
targets a hosted platform for data publication and application development of data intensive applications.
Both COMSODE and DaPaaS are in early stages at the time of this writing, and initial contact between
the two projects has been established to investigate the possibility of cooperation in the near future.

3.3 Relevant Technologies & Standards
This section provides an overview of various standards and technologies relevant to the Data Layer of
DaPaaS.

3.3.1 5 Star Open Data
While technically not an official standard, the 5 Star Open Data ranking (EPSI, 2010) is an approach
promoted initially by Sir Tim Berners Lee, that aims to provide a “Maslow pyramid” for open data,
comprised of the following levels:

 1 star – data is available on the web under some Open License

 2 stars – data is available as structured data in a machine readable format

 3 stars – data is accessible under a non-proprietary data format (CSV, JSON, RDF, …)

 4 stars – URIs are used to identify data fragments, so that fine-grained access to the data is
possible

 5 stars – data is inter-linked with other data on the Web

3.3.2 CKAN
CKAN is an open source software data catalogues, managed by the Open Knowledge Foundation. It is
currently the most widely used data catalogue software for open data and particularly popular with public
sector organisations across the world. A list of deployed instances is available at
http://ckan.org/instances and includes the government data catalogues of EU, US, UK and many other
countries and cities around Europe and worldwide.

The most popular use of CKAN is as a straightforward catalogue, with links to downloadable files
(whether managed directly by CKAN or elsewhere). Metadata is added by data owners through web
forms. There is also an API for creating or editing records and for accessing metadata in machine
readable forms.

It can be integrated with Web content management systems such as Drupal and Wordpress, to allow
customisation of websites and incorporation of other typical CMS features. CKAN also incorporates
community building features, such as commenting, social media links, ability to 'follow' a dataset etc.

For structured data (primarily spreadsheets and CSV files), CKAN can also store the data and offer an
API to access it38, as well as a user interface. This works by importing each tabular data source into its
own table in a PostgreSQL relational database. API requests make use of the table identifier and column
names based on the contents of the original file. The API allows arbitrary SQL queries to be executed
against the store.

3.3.3 DCAT
DCAT 39 stands for the Data Catalog Vocabulary, an RDF vocabulary designed to promote
interoperability between data catalogues on the Web. It has recently reached 'recommendation' status
in the W3C standardisation process.

It incorporates standards for describing the licence, methods of access, topic, coverage, creation and
update dates for datasets in a catalogue, making use of other existing vocabularies where appropriate,
notably the Dublin Core metadata standard. DCAT is applicable to all kinds of dataset formats.

38 http://docs.ckan.org/en/latest/datastore.html#the-datastore-api
39 http://www.w3.org/TR/2014/REC-vocab-dcat-20140116/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 24 / 43

The widely used CKAN data catalogue software makes use of DCAT to provide RDF metadata for
catalogue entries. PublishMyData also makes use of DCAT for describing datasets.

3.3.4 VoID
VoID40 stands for 'Vocabulary of Interlinked Datasets'. It is a W3C 'Interest Group Note' as part of the
work of the Semantic Web Interest Group. It is not expected to become a W3C recommendation.

VoID is specifically intended for describing RDF datasets (unlike DCAT which applies to any kind of
datasets). Like DCAT, VoID incorporates Dublin Core metadata for describing the general features of a
dataset, as well as the Friend of a Friend vocabulary (FOAF).

It allows the dataset owner to describe how to access the data, via SPARQL endpoint or by data
download. It also enables descriptions of the content of the dataset, in terms of structure and size, and
in how the dataset is connected to other datasets. This information may be useful to humans or to
software using the data.

VoID can be used in combination with DCAT to give a richer description of an RDF dataset than is
possible with DCAT alone.

3.3.5 CSV on the Web (W3C)
The mission of the CSV on the Web Working Group41, part of the Data Activity, is to provide technologies
whereby data dependent applications on the Web can provide higher interoperability when working with
datasets using the CSV (Comma-Separated Values) or similar formats. As well as single CSV files, the
group will define mechanisms for interpreting a set of CSVs as relational data. This will include the
definition of a vocabulary for describing tables expressed as CSV and locatable on the Web, and the
relationships between them. In this way, it will be possible to see CSVs as 5-star data (data that is
interlinked to other data) using the Web as an intelligent data platform rather than as a simple distribution
system for files containing inaccessible data.

3.3.6 JSON-LD
JSON-LD (W3C, 2014) is an official W3C Recommendation (as of January 2014) which defines a JSON-
based format for serialising and exchanging Linked Data.

The added value of JSON-LD is that it provides a relatively simple way for web developers to benefit
from RDF and Linked Data concepts (for example interlinking and global identifiers), while keeping
backward compatibility with the JSON format and existing web frameworks.

3.3.7 OData
The OData42 specification (Microsoft Corp., 2013) provides an easy way for data services to expose
operations for managing and querying data resources as RESTful APIs. OData (Figure 12) provides
recommendations for resource identifiers (URIs), HTTP based interface definition over the data service
or application, an abstract data model for describing the exposed data, as well as recommendations for
the data exchange format (JSON).

40 http://www.w3.org/TR/void/
41 http://www.w3.org/2013/csvw/wiki/Main_Page
42 http://www.odata.org/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 25 / 43

Figure 12: OData services, (c) David Chappell

3.4 Comparison of DaPaaS to Other Solutions
Based on the business requirements overview in section “Requirements Analysis” and the state-of-the-
art analysis in section “Existing Data-as-a-Service Solutions”, Table 5 provides a summary of the
similarities and key differentiations of DaPaaS and other solutions, as far as the DaaS aspect is
concerned.

Table 5: DaPaaS differentiation (DaaS aspect)

Solution Key similarities Key DaPaaS differentiation

Azure Data
Marketplace

Similar to DaPaaS, Azure aims at
providing a fully hosted, as-a-service
solution for data and applications

 Focus on Open Data
 Focus on Linked Data and

providing richer ways to inter-
link and query data

Factual Hosted data service for tabular data Factual is focussed only on
geo-spatial and product data

 Focus on Open Data from dif-
ferent domains

 Linked Data and providing
richer ways to query data

 Interlinking and mapping be-
tween datasets

Socrata DaaS solution for open data Focus on Linked Data and
SPARQL endpoints for com-
plex data queries

 Richer ways to interlink and
align data from different da-
tasets

DataMarket As-a-service data provider, data driven
portals

 Ability for 3rd parties to host
data on the platform

 Focus on Linked Data and
SPARQL endpoints for com-
plex data queries

 Richer ways to interlink and
align data from different da-
tasets

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 26 / 43

Junar Not really possible to assess the technical
capabilities of the Junar data layer (no
information available on the website)

 Most probably Linked Data
management and semantic in-
terlinking is out of scope for Ju-
nar

PublishMyData PMD has a subset of DaPaaS functionality
Including: Multi-format linked data
publishing, API support, dataset catalogue
etc

 PublishMyData is a DaPaaS
component as Swirrl is a part-
ner in the project.

 Interlinking & other platform
services

 Application hosting

LOD2 Software stack for Linked Data
management, no particular focus on Open
Data, not a hosted solution

 As-a-service hosted solution
 Ability for 3rd parties to host

data on the platform
 Handle Linked as well as non-

RDF data

EU Open Data
Portal

Provides a catalogue of externally hosted
datasets (but not data hosting itself)

 As-a-service hosted solution
 Ability for 3rd parties to host

data on the platform
 Richer ways to interlink and

align data from different da-
tasets

Project Open
Data

A software stack for Open Data
management, but not a hosted solution

 As-a-service hosted solution
 Focus on Linked Data and

SPARQL endpoints for com-
plex data queries

 Ability for 3rd parties to host
data on the platform

 Richer ways to interlink and
align data from different da-
tasets

COMSODE Data publication platform and
methodology, focus on open data

 As-a-service hosted solution
 Ability for 3rd parties to host

data on the platform

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 27 / 43

4 Data Layer Architecture
Section “Requirements for the Data Layer” provided the end-user requirements for the data layer of
DaPaaS. Based on these high-level business requirements, this section outlines the “technical view” of
the DaPaaS data layer with concrete capabilities and components supporting the identified business
requirements.

4.1 Data Model
The DaaS solutions analysed in section “Existing Data-as-a-Service Solutions” provide either a tabular
(entity/attribute) data model of the hosted data, or a graph based RDF model. In some cases the data
is available in its original form, e.g. key/value access to documents, spreadsheets and other files without
a pre-defined data structure.

Since DaPaaS is providing a data hosting environment for both RDF and non-RDF data, the data layer
cannot commit to one unified view only and will provide the option for hosted data to be represented and
thus available in various ways, based on the data provider's choices.

4.1.1 Key/Value Data
Key/value access is the simplest way to access data hosted on the data layer, by referencing the data
object identifier (a URL) or by providing a simple restriction over the metadata associated with the data
object (e.g. author, timestamp, keywords, etc.) This is useful for data which does not abide to a
predefined logical data model and structure, such as office formats (PDF, spreadsheets), images, etc.

Some simple extraction from such files (PDF, spreadsheets) into more structured tabular data or RDF
data – for example a table – will be provided by the import adapters in the data layer.

A query of this type may look like:

KEY=OBJECT_ID

4.1.2 Tabular Data
A lot of data that will be hosted on the platform abides to a tabular logical model, for example relational
tables, spreadsheets / CSV files, etc. Such data may be queried by more complex attribute/value
restrictions.

Depending on the preferences of the data provider, some of the legacy tabular data may be converted
into RDF / Linked Data via standard (RDB2RDF) or custom approaches (CSV-to-RDF).

A query of this type may look like:

ATTRIBUTE1=VALUE1&ATTRIBUTE2=VALUE2&…

4.1.3 RDF & Linked Data
The RDF and Linked Data model provide the most flexibility in terms of representing, interlinking and
querying data. Data stored as RDF on the platform will be accessible via arbitrary complex and
expressive SPARQL queries, may be queried in a federated manner, or may be interlinked with other
semantic data on the platform (depending on data provider preferences).

4.2 Technical Capabilities
This section outlines the technical capabilities and components for the Data Layer, based on the
business requirements of the different roles/actors identified in section “Requirements for the Data
Layer”.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 28 / 43

4.2.1 RDF Storage & Access
In order to provide functionality for managing and querying RDF data, the Data Layer will provide an
RDF datastore component, which is accessible via standard Jena43 & OpenRDF44 APIs and exposes a
SPARQL endpoint.

Section 5.1 provides a brief overview of such software components.

4.2.2 Non-RDF Storage & Access
Since some of the data stored on the platform will not conform to the RDF data model, a datastore
component providing efficient and scalable key/value queries and queries over tabular/nested structures
is also required.

The non-RDF data may be RDF-ised (based on data owner preferences) and available for SPARQL
querying from the RDF data store as well. When data is RDF-ised, the original form (CSV, JSON, etc.)
will be preserved, since some applications may be using this data form via simple key/value queries and
API access, and not utilise more expressive ways to query and explore data such as SPARQL.

Section 5.2 provides a brief overview of such software components.

4.2.3 Full-text Search
Some of the Open Data hosted on the platform may include textual content and documents, or large
amounts of textual fields within structured data. In order to perform efficient lookup & discovery on such
data, some full-text search capability is also required for the Data Layer.

Full-text search capabilities are usually available in the data management components (Sections 4.2.1
and 4.2.2) and there exist very scalable standalone solutions as well (Section 5.2.4).

4.2.4 Data Catalogue
A data catalogue API is required for efficient dataset exploration and discovery. VoID (3.3.4) and DCAT
(3.3.3) provide such emerging standards (and APIs), so such technical capability should be available in
the data layer prototype.

4.2.5 Querying
As clarified in section “Data Model”, the data layer will provide various types of query capabilities with
different expressivity:

 Simple key/value lookups for binary or non-structured data;

 More complex filtering and attribute/value restrictions for structured, unstructured (text) and
semi-structured data;

 Complex and expressive SPARQL queries over RDF data.

The query functionality will be available to end-user applications and other services on the platform in
two ways:

 RESTful APIs

 Standard SPARQL endpoint

4.2.6 Interlinking
While more complex, semi-automated or manual data transformation capabilities will be exposed in the
Platform Layer of DaPaaS, some simple and automated interlinking of RDF data can already be
performed within the Data Layer, without the need for significant data publisher involvement (apart from

43 https://jena.apache.org/index.html
44 http://www.openrdf.org/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 29 / 43

some configuration of the interlinking process parameters). Such capability will be available in the Data
Layer so that automated alignment & interlinking between RDF datasets will be possible.

4.2.7 Caching
Caching of query results may be required in order to improve Data Layer performance and scalability
and reduce the overload of the data storage and management components of the platform. It is important
to note that efficiently caching SPARQL query results is very challenging, due to the expressivity and
complexity of such queries. However key/value lookups and simple attribute/value queries as well as
catalogue metadata which are accessed frequently, provide good candidates for performance speedup
via caching.

4.2.8 Import / Export
Dataset import and export is an important feature of the Data Layer of the platform. As already clarified,
DaPaaS will import open data in variety of formats and will not restrict data to RDF-only (as some other
hosting solutions do). At data import time various adapters may provide means for automated RDF-
isation of the data being imported, e.g. direct RDB2RDF mapping of relational/tabular data, direct CSV-
2-RDF transformations, etc.

Datasets will be available for export and download as archived data dumps, based on data publisher
preferences.

4.2.9 Notifications & Statistics
The Data Layer should provide various notifications about data changes and performance. For example:

 New datasets added to the platform;

 New data added to a dataset / existing data deleted or modified;

 Combined datastore load – number of queries per second, number of I/O operations, data
input/output, etc., for the management aspects of the system and the Instance Operator;

 Account activity – number of queries per user, data in/out, etc. so that proper quotas and
resource limits may be enforced in order to guarantee “fair use” of the system;

 Various additional notifications to other layers and components of the DaPaaS platform.

4.3 Non-functional Aspects
In addition to the technical capabilities outlined in Section 4.2, which correspond to the functional
requirements, certain non-functional technical requirements or aspects will be considered during the
implementation and operation of the Data Layer.

4.3.1 Scalability
The data management and querying components should be able to scale up to large volumes of data
and concurrent queries. Such components should be able to be deployed in a distributed (replicated or
shared-nothing) way so that the Data Layer scales up together with the size of data hosted and the
number of concurrent queries by the application and User Interface layers.

4.3.2 User Management & Access Control
The data publisher should be able to specify who has access to the data that it uploads on the DaPaaS
platform. The data management & querying components should support at least the following access
control levels for the hosted data (based on publisher preferences):

 Public dataset - readable and writeable by all DaPaaS users/applications;

 Read-only dataset - readable by all DaPaaS users/applications, writable only by dataset owner;

 Private dataset - accessible only by dataset owner (private dataset).

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 30 / 43

The data management components for DaPaaS will be selected so that they support such data access
control mechanisms.

4.3.3 Availability
Proper technical means should be provided, so that data availability is ensured. This includes:

 Backups of data hosted on the platform;

 Means for detecting data service failures and automatically provisioning replacement services.

When a live prototype is deployed on a Cloud provider, means for automated backups and load-
balancing and failover will be ensured as well (for example Amazon Web Services provides such
functionality).

4.3.4 Monitoring
Means for automated service monitoring will be part of the Platform Layer (see more details about this
in Deliverable D2.1).

4.4 Data Layer Architecture & Components
Section 4.2 outlined the technical capabilities that will be implemented in the data layer of the platform.
This section outlines how these capabilities are mapped to concrete software components and what is
the interaction between the different components.

Figure 13 provides the architecture of the DaPaaS Data Layer. A typical example of a dataflow in the
Data Layer follows steps such as:

1. Data Publisher (DP) imports a new dataset into the platform, either via the APIs or via the UI.

2. At import time the DP may decide to apply direct transformations over the imported data
(RDB2RDF, CSV RDF-isation, other types of simple and direct RDF-isation).

3. Data enters the Open Data Warehouse:

a. RDF data goes directly into the RDF/metadata datastore.

b. Non-RDF data goes into the content store.

i. Optionally, the data may be RDF-ised and new data added to the RDF
datastore as well.

c. Textual data is automatically indexed.

d. Optionally, analytics may be automatically performed over the data (e.g. RDF Rank
calculations).

4. Optionally, automated interlinking of the new data may be applied and the resulting mappings
are returned to the DP for revision and approval. The approved mappings can be imported by
the DP into the platform as well.

5. Optionally DP may apply changes to its data (deletions and updates).

6. Application Developers (AD) and End-user Data Consumers (EU) browse the hosted catalogues
either via the VoiD / DCAT APIs, or via a graphical UI (outside of the Data Layer)

7. AD and EU access data via the APIs and query endpoints

a. Optional caching is employed when possible, in order to speed-up the performance

8. Notifications & Statistics are sent to the centralised management infrastructure of the platform

9. Optionally, DP/AP/EU may export some dataset and get a local copy of its original format as
well as any newly generated metadata.

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 31 / 43

Figure 13: Data Layer Architecture

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 32 / 43

4.5 Summary of Addressed Requirements
Table 6 clarifies how the business requirements (introduced in section “Requirements for the Data
Layer”) are addressed by the components of the Data Layer (a '+' is used to indicate this relation for
each requirement).

Table 6: Addressed requirements by components of the Data Layer
D

a
P

a
a

S
 P

la
tf

o
rm

R
e

q
u

ir
e

m
e

n
t

Im
p

o
rt

 &
 E

x
p

o
rt

Im
p

o
rt

 A
d

a
p

te
rs

D
a

ta
 A

c
c

e
s

s
 &

Q
u

e
ry

D
a

ta
 U

p
d

a
te

s

C
a

ta
lo

g
u

e

A
c

c
e

s
s

C
a

c
h

in
g

In
te

rl
in

k
in

g

M
e

ta
d

a
ta

 S
to

re

C
o

n
te

n
t

S
to

re

F
u

ll
-t

e
x
t

S
e

a
rc

h

In
-d

a
ta

b
a
s

e

A
n

a
ly

ti
c

s

N
o

ti
fi

c
a

ti
o

n
s
 &

S
ta

ti
s
ti

c
s

IO-01

IO-02 +

IO-03 +

IO-04

IO-05 + + + +

IO-06

DP-01 + +

DP-02 + + + + +

DP-03 + +

DP-04 + +

DP-05

DP-06 + + +

DP-07 + + +

DP-08 + + + + +

DP-09 + + + +

DP-10

DP-11 + + +

DP-12

DP-13

AD-01 + + + + + + + +

AD-02 +

AD-03

AD-04

AD-05

AD-06

AD-07

AD-08

EU-01

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 33 / 43

EU-02 + + + + + + +

EU-03 +

EU-04

EU-05 +

EU-06 + +

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 34 / 43

5 Relevant Tools
This section provides an overview of various tools which are relevant to the technical capabilities and
components identified in sections “Technical Capabilities” and “Data Layer Architecture & Components”.

5.1 RDF Databases
A triplestore is a purpose-built database for the storage and retrieval of triples, a triple being a data entity
composed of subject-predicate-object.

Much like a relational database, one stores information in a triplestore and retrieves it via a query
language. Unlike a relational database, a triplestore is optimized for the storage and retrieval of triples.
In addition to queries, triples can usually be imported/exported using RDF and other formats.

Some triplestores have been built as database engines from scratch, while others have been built on
top of existing commercial relational database engines (i.e. SQL-based).

5.1.1 OWLIM
OWLIM is a high-performance semantic repository created by Ontotext. It is implemented in Java and
packaged as a Storage and Inference Layer (SAIL) for the Sesame RDF framework. OWLIM is a native
RDF rule-entailment and storage engine. The supported semantics can be configured through rule-set
definition and selection. Included are rule-sets for OWL-Horst, unconstrained RDFS with OWL Lite and
the OWL2 profiles RL and QL. Custom rule-sets allow tuning for optimal performance and expressivity.

Reasoning and query evaluation are performed over a persistent storage layer. Loading, reasoning and
query evaluation proceed extremely quickly even against huge ontologies and knowledge bases.

OWLIM can manage billions of explicit statements on desktop hardware and can handle tens of billions
of statements on commodity server hardware.

Features45 of OWLIM include:

 Pure Java implementation, ensuring ease of deployment and portability;

 Compatible with Sesame 2, which brings interoperability benefits and support for all major RDF
syntaxes and query languages;

 Compatible with Jena with a built in adapter layer;

 Customisable reasoning, in addition to RDFS, OWL-Horst, and OWL 2 RL support;

 Optimized owl:sameAs handling, which delivers dramatic improvements in performance and
usability when huge volumes of data from multiple sources are integrated.

 Clustering support brings resilience, fail-over and scalable parallel query processing;

 Geo-spatial extensions for special handling of 2-dimensional spherical data allowing data using
the WGS84 RDF vocabulary to be indexed and processed quickly using a variety of special
geometrical query constructions and SPARQL extensions functions;

 Full-text search support, based on either Lucene or proprietary search techniques;

 High performance retraction of statements and their inferences – so inference materialisation
speeds up retrieval, but without delete performance degradation;

 Powerful and expressive consistency/integrity constraint checking mechanisms;

 RDF rank, similar to Google's PageRank, can be calculated for the nodes in an RDF graph and
used for ordering query results by relevance, visualisation and any other purposes;

 RDF Priming, based upon activation spreading, allows efficient data selection and context-
aware query answering for handling huge datasets;

 Notification mechanism, to allow clients to react to statements in the update stream.

45 Some features are not available in OWLIM-Lite edition (refer http://owlim.ontotext.com/ for details)

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 35 / 43

OWLIM family versions:

 OWLIM-Lite is fast semantic repository, supporting non-trivial inference with tens of millions of
statements on contemporary desktop hardware.

 OWLIM-SE is an extremely scalable semantic repository: it can load tens of billions of RDF
statements, using non-trivial inference and delivering outstanding multi-user query
performance. OWLIM-SE is a robust engine packed with advanced features that bring
unmatched efficiency to a huge variety of application scenarios:

o optimized owl:sameAs handling that delivers dramatic improvements in performance
and usability when huge volumes of data from multiple sources are integrated

o hybrid querying capabilities that combine SPARQL with efficient full-text search, geo-
spatial constraints and ranking of query results

 OWLIM-Enterprise is a replication cluster infrastructure based on OWLIM-SE. It offers
industrial strength resilience and linearly scalable parallel query performance, with support for
load-balancing and automatic fail-over

5.1.2 Sesame
Sesame46 is an open source Java framework for storage and querying of RDF data. The framework is
fully extensible and configurable with respect to storage mechanisms, inferencers, RDF file formats,
query result formats and query languages. Sesame offers a JBDC-like user API, streamlined system
APIs and a RESTful HTTP interface supporting the SPARQL Protocol for RDF.

Out of the box, Sesame supports SPARQL and SeRQL querying, a memory-based and a disk-based
RDF store and RDF Schema inferencers. It also supports most popular RDF file formats and query
result formats. Various extensions are available or are being worked at elsewhere.

Here follows a high-level overview of Sesame's components:

Figure 14: Sesame Architecture
All the way at the bottom of the diagram is the RDF Model, the foundation of the Sesame framework.
Being an RDF-oriented framework, all parts of Sesame are to some extent dependent on this RDF
model, which defines interfaces and implementation for all basic RDF entities: URI, blank node, literal
and statement.

Rio, which stands for "RDF I/O", consists of a set of parsers and writers for various RDF file formats.

The Storage And Inference Layer (SAIL) API is a low level System API for RDF stores and inferencers.
Its purpose is to abstract from the storage and inference details, allowing various types of storage and
inference to be used (mainly of interest for triplestore developers).

The Repository API is a higher level API that offers a large number of developer-oriented methods for
handling RDF data. It offers various methods for uploading data files, querying, and extracting and
manipulating data. There are several implementations of this API, the ones shown in this figure are the

46 http://www.openrdf.org/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 36 / 43

SailRepository and the HTTPRepository. The former translates calls to a SAIL implementation of choice,
the latter offers transparent client-server communication with a Sesame server over HTTP.

The top-most component in the diagram is the HTTP Server. The HTTP Server consists of a number of
Java Servlets that implement a protocol for accessing Sesame repositories over HTTP. The details of
this protocol can be found in Sesame's system documentation, but most people can simply use a client
library to handle the communication. The HTTPClient that is used by the HTTPRepository is one such
library.

5.1.3 Apache Jena Framework
Jena47 is an open source Semantic Web framework for Java. It provides an API to extract data from and
write to RDF graphs. The graphs are represented as an abstract "model". A model can be sourced with
data from files, databases, URLs or a combination of these. A Model can also be queried through
SPARQL and updated through SPARUL.

Jena is similar to Sesame; though, unlike Sesame, Jena provides support for OWL (Web Ontology
Language). The framework has various internal reasoners and the Pellet reasoner48 (an open source
Java OWL-DL reasoner) can be set up to work in Jena.

Jena architecture overview:

 The Graph layer is the base layer in Jena. It is very granular and is a very minimal
implementation of the RDF specification. It permits a wide range of implementations, such as
in-memory or persistent triple stores.

 The Model layer extends the core functionality in the Graph layer in such a way, that by allowing
developers to work with objects of type "Resource" or "Property" or "Statement", instead of
"Node" or "Triple".

 The OntModel Layer supports inference capabilities, that is, the ability to work with triples that
are implied, in addition to the triples that have been explicitly defined.

5.2 NoSQL Databases
A NoSQL database provides a mechanism for storage and retrieval of data that is modeled in means
other than the tabular relations used in relational databases. Motivations for this approach include
simplicity of design, horizontal scaling and finer control over availability. NoSQL databases are often
highly optimized key–value stores intended primarily for simple retrieval and appending operations.

In the context of the CAP theorem49, NoSQL stores often compromise consistency in favor of availability
and partition tolerance. Barriers to the greater adoption of NoSQL data stores in practice include: the
lack of full ACID transaction support, the use of low-level query languages, the lack of standardized
interfaces, and the huge investments already made in SQL by enterprises.

The promise of the NoSQL database has generated a lot of enthusiasm, but there are many obstacles
to overcome before they can appeal to mainstream enterprises. Here are a few of the top challenges.

 Maturity - RDBMS systems, been around for a long time, are stable and richly functional. In
comparison, most NoSQL alternatives are in pre-production versions with many key features
yet to be implemented. Living on the technological leading edge is an exciting prospect for many
developers, but enterprises should approach it with extreme caution.

 Support - enterprises want the reassurance that if a key system fails, they will be able to get
timely and competent support. All RDBMS vendors go to great lengths to provide a high level of
enterprise support. In contrast, most NoSQL systems are open source projects, and although
there are usually one or more firms offering support for each NoSQL database, these companies
often are small start-ups without the global reach, support resources, or credibility of an Oracle,
Microsoft, or IBM.

47 http://jena.apache.org/
48 http://clarkparsia.com/pellet
49 http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 37 / 43

 Analytics and business intelligence - NoSQL databases have evolved to meet the scaling
demands of modern Web 2.0 applications. Consequently, most of their feature set is oriented
towards the demands of these applications. However, data in an application has value to the
business that goes beyond the insert-read-update-delete cycle of a typical Web application.
NoSQL databases offer few facilities for ad-hoc query and analysis. Sometimes a simple query
requires significant programming expertise, and commonly used BI tools do not provide
connectivity to NoSQL. There are some solutions such as HIVE or PIG which approach the
problem, providing easier access to data held in Hadoop clusters and perhaps eventually, other
NoSQL databases.

 Administration - the design goals for NoSQL may be to provide a zero-admin solution, but the
current reality falls well short of that goal. NoSQL today requires a lot of skill to install and a lot
of effort to maintain.

 Expertise - There are literally millions of developers throughout the world, and in every business
segment, who are familiar with RDBMS concepts and programming. In contrast, almost every
NoSQL developer is in a learning mode. This situation will be addressed naturally over time, but
for now, it's far easier to find experienced RDBMS programmers or administrators than a NoSQL
expert.

5.2.1 Cassandra
Apache Cassandra50 is an open source distributed database management system designed to handle
large amounts of data across many commodity servers, providing high availability with no single point
of failure. Cassandra offers robust support for clusters spanning multiple datacenters, with
asynchronous masterless replication allowing low latency operations for all clients.

Cassandra's data model is a partitioned row store with tuneable consistency. Rows are organized into
tables; the first component of a table's primary key is the partition key; within a partition, rows are
clustered by the remaining columns of the key. Other columns may be indexed separately from the
primary key. Tables may be created, dropped, and altered at runtime without blocking updates and
queries.

Main features of Cassandra include:

 Decentralized - every node in the cluster has the same role. There is no single point of failure.
Data is distributed across the cluster (so each node contains different data), but there is no
master as every node can service any request.

 Replication - Cassandra is designed as a distributed system, for deployment of large numbers
of nodes across multiple data centers. Key features of Cassandra’s distributed architecture are
specifically tailored for multiple-data center deployment, for redundancy, for failover and disaster
recovery.

 Scalability - read and write throughput both increase linearly as new machines are added, with
no downtime or interruption of applications.

 Fault-tolerant - data is automatically replicated to multiple nodes for fault-tolerance. Replication
across multiple data centres is supported. Failed nodes can be replaced with no downtime.

 Query language CQL (Cassandra Query Language) - a SQL-like alternative to the traditional
RPC interface. Language drivers are available for Java (JDBC), Python (DBAPI2) and Node.JS
(Helenus).

5.2.2 HBase
Apache HBase 51 is an open-source, distributed, versioned, column-oriented store build on top of
Hadoop and HDFS.

50 http://cassandra.apache.org/
51 http://hbase.apache.org/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 38 / 43

HBase is applicable for cases where random, real-time read/write access to Big Data is needed. HBase's
goal is the hosting of very large tables - billions of rows X millions of columns -- atop clusters of
commodity hardware.

HBase features include:

 Linear and modular scalability.

 Strictly consistent reads and writes.

 Automatic and configurable sharding of tables

 Automatic failover support in distributed cluster deployment.

 Convenient base classes for backing Hadoop MapReduce jobs with Apache HBase tables.

 Easy to use Java API for client access.

 Block cache and Bloom Filters for real-time queries.

 Query predicate push down via server side Filters

 Thrift gateway and a RESTful Web service that supports XML, Protobuf, and binary data
encoding options

 Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX

5.2.3 CouchBase
CouchBase is a distributed, document oriented database using JSON as a native data model. Each
document is uniquely named in the database, and CouchBase provides a RESTful HTTP API for reading
and updating (add, edit, delete). Documents consist of any number of fields, metadata and attachments.
Document updates are all or nothing, either succeeding entirely or failing completely. The database
never contains partially saved or edited documents.

CouchBase features include:

 Flexible data model based on JSON

 Primary and secondary indices build as views on documents

 Data querying based on: explicit key, list of keys, ranges of keys

 MapReduce support for incremental data indexing and querying

 Horizontal scalability, both cross-cluster data sharding and replication supported

 Built-in object-level cache, based on memcached

 Fully supported SDKs for Java, C#, PHP, C, Python and Ruby

5.2.4 Solr
Solr52 is the popular, fast open source enterprise search platform from the Apache Lucene project. Its
major features include powerful full-text search, hit highlighting, faceted search, near real-time indexing,
dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial
search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and
load-balanced querying, automated failover and recovery, centralized configuration and more. Solr
powers the search and navigation features of many of the world's largest Internet sites.

Solr is written in Java and runs as a standalone full-text search server within a servlet container such as
Jetty. Solr uses the Lucene Java search library at its core for full-text indexing and search, and has
REST-like HTTP/XML and JSON APIs that make it easy to use from virtually any programming language.
Solr's powerful external configuration allows it to be tailored to almost any type of application without
Java coding, and it has an extensive plug-in architecture when more advanced customization is
required.

52 http://lucene.apache.org/solr/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 39 / 43

5.3 RDB2RDF Tools

5.3.1 db2triples
The db2triples library is a software tool for extracting data from relational databases and loading data
into an RDF triple store. It implements R2RML and Direct Mapping standards defined by W3C's
RDB2RDF. The implementation has been validated by the RDB2RDF working group and it has served
as a bench test during the different phases of definition and validation of the RDB2RDF
recommendations.

In a nutshell, db2triples accepts as input RDBMS connection parameters and a R2RML transformation
document (and no mapping in case of Direct Mapping mode). The output is the RDF dump of the
database data based on the transformation mode used. The tool manages the memory efficiently, which
in turn enables it to process large amounts of data.

Supported RDBMS include MySQL and PostgreSQL.

Db2triples is an open source software implemented in Java, published under the LGPL license. The
source code and building instructions are available at Github53.

5.4 PDF Import Tools

5.4.1 Tabula
Tabula54 is a free tool for extracting tabular data out of (text-based) PDF files. It provides simple web
interface which lets the user to upload input PDF documents and extract the relevant data. The backend
functionality is shaped as a web service accessible over HTTP from any client browser. The output
serialisation format is either CSV or TSV. Tabula is free and available under the MIT open-source license.

Tabula applies different heuristics to cover a broader range of tables and styles in the PDF document:
tables with, without or a mixture of ruler lines, cell shading and colouring. There are certain limitations
caused by the complexity of the tasks, such as processing scanned PDFs or complex (non rectangular)
tables having rows or columns spanning through several cells. Other limitations are due to immaturity
of the early stage of development.

5.5 CSV import tools

5.5.1 CSV-to-API
CSV-to-API is a lightweight tool serving as data wrapper on top of static CSV dumps. It exposes its
functionality as RESTful API, accepting as input URL of the source CSV data and outputs the
transformed data into JSON, XML or HTML format. This way the tool itself is completely decoupled from
the data it processes and can be deployed on any server and reused for different data sources.

Additionally CSV-to-API serves as a filter sitting between the CSV data and the client providing simple
data filtering and sorting functionalities.

The generated data uses the original CSV column names as key names. This implies certain restrictions
on the CSV sources.

Example:

http://example.com/csv-to-api/?source=http://www.gsa.gov/dg/data_gov_bldg_star.csv
 &Region+Code=11
 &format=html
 &sort=Bldg+Zip
(export data filtered by Region Code, sorted by Bldg Zip in HTML format

53 https://github.com/antidot/db2triples/
54 https://github.com/jazzido/tabula

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 40 / 43

The tool is open source, written in PHP and available on GitHub55.

5.5.2 CSV.js
CSV.JS is a simple pure JavaScript CSV library focused on the browser side processing. It offers
different processing operations on CSV data including import from inline data, remote data (URL) or
from HTML5 file object. The internal data representation is a JavaScript object which can be serialized
naturally as JSON. The implementation is based on jQuery framework.

5.5.3 Mr. Data Converter
Mr. Data Converter is a completely browser side application based on JavaScript. It processes CSV/TSV
data and can generate XML, JSON, ASP/VBScript or basic HTML table formatting as well as arrays in
PHP, Python (as a dictionary) and Ruby. It is a free open source tool available at GutHub56.

5.6 Silk Framework
The Silk Link Discovery Framework57 is a tool supporting data publishers in accomplishing the task of
discovering relationships between data items within different Linked Data sources. Using the declarative
Silk - Link Specification Language (Silk-LSL), developers can specify which types of RDF links should
be discovered between data sources as well as which conditions the data items must fulfil in order to be
interlinked. These link conditions may combine various similarity metrics and can take the graph around
a data item into account, which is addressed using an RDF path language. Silk accesses the data
sources that should be interlinked via the SPARQL protocol and can thus be used against local as well
as remote SPARQL endpoints.

The main features of the Silk Framework are:

 Flexible, declarative language for specifying linkage rules

 Support of RDF link generation in RDF

 Employment in distributed environments (by accessing local and remote SPARQL endpoints)

 Usable in situations where terms from different vocabularies are mixed and where no consistent
RDFS or OWL schemata exist

 Scalability and high performance through efficient data handling:

o Reduction of network load by caching and reusing of SPARQL result sets

o Multi-threaded computation of the data item comparisons

o Optional blocking directive, which allows users to reduce the number of comparisons
on cost of recall, if necessary.

 Active Learning of expressive linkage rules using genetic programming58

 Silk Workbench - a web application which guides the user through the process of creating link
specifications, results evaluation, and linkage rules learning.

6 Recommendations
This section provides recommendations for 3rd party software components and frameworks to be
adopted, based on the architecture outline in section “Data Layer Architecture & Components” and the
analysis of various tools in section “Relevant Tools”. Additionally, an initial provisioning plan (in terms of
hardware & software requirements) for the data layer components is provided.

55 https://github.com/project-open-data/csv-to-api
56 https://github.com/shancarter/Mr-Data-Converter
57 http://www4.wiwiss.fu-berlin.de/bizer/silk/
58 http://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/pub/IseleBizer-ActiveLearningOfExpressive-
LinkageRules-JWS2013.pdf

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 41 / 43

6.1 Components
Referring back to the Data Layer Architecture and the relevant tools reviewed so far, here we provide
recommendations on which tools should be considered when developing the corresponding
architectural components.

Metadata Store

Any of the free RDF frameworks can be used for the DaaS Platform, however taking into account the
large amount of data the platform aims to host and the complexity of queries capable to answer, OWLIM
is the preferred choice.

Content Store

Depending on the type of the data we are hosting a different content store implementation is more
appropriate. For storing tabular data and being able to answer more complex queries, a column store
implementation is necessary. Both HBase and Cassandra are good candidates, each having its
advantages. Cassandra performs better on data updates however it comes with the price of eventual
consistency. HBase has better integration with PIG59 and HIVE60 which is beneficial for mass data
processing.

For more complex / nested data structures represented as JSON, the recommended content store is
CouchBase (but alternatives like MongoDB will also satisfy the data layer requirements).

In-database analytics

For doing in-database analytics we can apply two specific techniques supported by OWLIM: RDF
ranking and spreading activation. The former provides data ranking on the base of local connectivity of
the nodes, while the latter provides context-aware data selection and query answering.

Faceted & Full-text Search

For various faceted general purpose full-text indexing and search, Solr provides sufficient capabilities.

Import/Export Adapters

There are plenty of tools supporting data transformations from various input formats. For RDFization of
RDBMS data we'll use db2triples (one of the first implementations of W3C's R2RML and DirectMapping)

Interlinking

The Silk framework is a quite promising solution for doing automated interlinking between entities from
different datasets. Though its major strength is in the active supervised linkage rules learning (applicable
for WP2), the capabilities to efficiently generate linkage data on large datasets makes it a good candidate
for the Data Layer as well.

59 https://pig.apache.org/
60 http://hive.apache.org/

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 42 / 43

6.2 Deployment & Provisioning
This section provides requirement estimations regarding the deployment of the DaaS infrastructure in
terms of hardware and software components. Note that this is the initial roadmap and some changes
can be expected.

6.2.1 Hardware Requirements
Table 7: Initial hardware requirements

Resource Amount (base) Comments
RAM 128 GB The amount of RAM has direct impact on the open data

warehouse performance (various indexes and internal
caches)

HDD SATA 2TB This amount will be shared between the content store,
metadata store and FTS indexes. The estimated storage
amount is capable to host the popular linked open datasets
and any overhead related to indexing and additional
metadata persistence.
SSD disks will improve the performance under extremely
heavy query loads but SATA disks will be sufficient.

CPU 2x8 Xeon Computational power is also important aspect related to
efficient data transformations (import/export) as well as
complex query answering.

6.2.2 Software Requirements
Table 8: Initial software requirements

Software Type/version Comments
OS Any None of the components demand certain OS requirements

(mostly Java based implementations)
JVM 1.6+ The RDF database requires Java Virtual Machine v1.6 (or

newer)
Application

server
Tomcat 7.x Tomcat is required for deploying the RDF database and its

administrative tools
Hadoop/HDFS 2.x Needed for running the content store (HBase)

HBase 0.96+ We recommend the latest stable release
OWLIM 5.4+ This is not mandatory requirement, unless scalable RDF

storage and querying is necessary

D1.1: Open DaaS requirements, design & architecture
specification

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 43 / 43

Bibliography
DaPaaS Project. (2014). D2.2 - Open PaaS requirements, design & architecture

specification.
EPSI. (2010). The Five Stars of Open Data.
LOD2 Project. (2012). Managing the Life-Cycle of Linked Data with the LOD2 Stack.

11th International Semantic Web Conference. Boston.
Microsoft Corp. (2011). Windows Azure Marketplace.
Microsoft Corp. (2013). Open Data Protocol (OData).
W3C. (2014). JSOn-LD 1.0 - A JSON-based Serialization for Linked Data. W3C.

