
Copyright DaPaaS Consortium 2013-2015

 Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable D2.3

Open Data PaaS prototype, v.2

Date: 31 July 2015

Author(s):
Alex Simov (Ontotext) , Marin Dimitrov (Ontotext), Nikolay
Nikolov (SINTEF), Antoine Pultier (SINTEF), Dina Suhobok
(SINTEF), Xianglin Ye (SINTEF), Dumitru Roman (SINTEF)

Dissemination level: PU

WP: WP2

Version: 1.0

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 2 / 22

Document metadata

Quality assurors and contributors

Quality assuror(s) Rick Moynihan (Swirrl), Amanda Smith (ODI)

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 21.07.2015
Initial outline and Table of
Contents (TOC)

0.2 23.07.2015
Preliminary content and input to
Section 2

0.3 24.07.2015 Version for internal review

0.4 28.07.2015 Review comments implemented

1.0 30.07.2015 Adjustments and finalization.

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 3 / 22

Executive Summary

This report represents the updates on the Platform-as-a-Service (PaaS) layer for the final prototype of
the DaPaaS platform, more recently known as DataGraft and deployed at DataGraft.net. For brevity
the document focuses on the changes made since the first version of the platform described in D2.21.

Significant progress has been achieved in the development of Grafterizer (formerly Grafter GUI
frontend framework), an interactive tool for data cleaning and transformation tasks based on Grafter.

New transformations management and execution components have been developed to support the
access, persistence and execution of data transformations.

The catalogue services have been extended to support searching and metadata management for data
transformations.

1 Available via http://project.dapaas.eu/dapaas-reports

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 4 / 22

Table of Contents

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS... 5

LIST OF FIGURES .. 6

1 INTRODUCTION ... 7

2 UPDATED PLATFORM IMPLEMENTATION – FINAL PROTOTYPE ... 8

2.1 DATAGRAFT PLATFORM INTERFACE .. 8
2.1.1 Features ... 8
2.1.2 Implementation of the platform interface .. 9

2.2 DATA CLEANING AND TRANSFORMATIONS DEVELOPMENT .. 9
2.2.1 Grafterizer features .. 10
2.2.2 Grafterizer implementation ... 11

2.3 FLOW, USER DOCUMENTATION, TUTORIALS ... 11
2.3.1 Wireframes .. 12
2.3.2 Scenario-based videos ... 12
2.3.3 User documentation ... 12
2.3.4 API documentation .. 12

2.4 TRANSFORMATIONS MANAGEMENT SERVICE .. 13
2.5 TRANSFORMATIONS CATALOGUE SERVICE .. 13
2.6 USER MANAGEMENT & ACCESS CONTROL ... 14

3 CONCLUSION .. 16

4 APPENDIX A: DATAGRAFT WIREFRAMES DESIGN .. 17

4.1 FLOW 1: CREATE FIRST DATA PAGE .. 17
4.2 FLOW 2: DASHBOARD ACTIONS .. 18
4.3 FLOW 3: SEARCH AND EXPLORE DATA ... 18

5 APPENDIX B: API DOCUMENTATION .. 19

5.1 TRANSFORMATIONS MANAGEMENT API ... 19
5.2 TRANSFORMATIONS CATALOGUE API ... 20
5.3 API KEYS MANAGEMENT .. 21

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 5 / 22

List of Acronyms

API Application Programming Interface

CSV Comma Separated Values (format)

DaaS Data-as-a-Service

DSL Domain Specific Language

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation (format)

PaaS Platform-as-a-Service

REST Representational state transfer

RDF Resource Description Framework

SLA Service Level Agreement

SOA Service Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language

DBaaS Database-as-a-Service

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 6 / 22

List of Figures

Figure 1: Architecture of the PaaS layer .. 8
Figure 2. Data cleaning (pipeline).. 9
Figure 3. Transformation of data to RDF ... 10
Figure 4. Screenshot of the Grafterizer UI .. 10
Figure 5. Transformations Management service ... 13
Figure 6. DCAT extension for transformations .. 14
Figure 7. API keys usage ... 15

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 7 / 22

1 Introduction

This report represents supporting documentation for the prototype developed for Deliverable D2.3
“Open Data PaaS prototype, v.2”.

This report describes the updates to the platform as a service (PaaS) layer for the final prototype of
the DaPaaS platform, more recently known as DataGraft and deployed at DataGraft.net. The
document focuses on the changes made since the first version of the platform described in D2.22.

Significant progress has been made through the development of Grafterizer (formerly Grafter GUI), an
interactive tool for data cleaning and transformation tasks based on Grafter. An extensive description
has been provided in Section 2.2.

A new integration component has been developed, responsible for the transformations management
and execution tasks, providing support for transformations definitions access, persistence and
execution. It provides a RESTful API to be used by other platform components (Grafterizer, DataGraft
UI) as well as by 3rd party components (applications).

The catalogue services have been extended to support searching and metadata management for
transformations.

The structure of the document is as follows:

 Overview of the updated platform architecture

 DaPaaS platform user interface description

 Grafterizer description

 Transformations management and catalogue services description

 Reference information included as Appendix: wireframes, APIs documentation

2 Available via http://project.dapaas.eu/dapaas-reports

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 8 / 22

2 Updated Platform Implementation – Final Prototype

Figure 1 depicts the main software components of the final version of the platform layer, their
relationships and associated APIs. The software components of the Platform Layer extend the
capabilities offered by the Data Layer in four main service categories:

 User Management & Access Control, which manages user profiles and secure access
control to transformations and datasets.

 Interactive Data Cleaning & Transformation Development, which provides functionalities
for developing data cleaning & transformation processes.

 Transformations Management, which gives developers control over the deployed
transformations and their configuration settings.

 Transformations Catalogue for searching and exploring transformations and their metadata.

Figure 1: Architecture of the PaaS layer

2.1 DataGraft platform interface

The current version of the DataGraft platform has been deployed and is publicly available online on
the domain datagraft.net through the DataGraft platform interface. The platform interface implements
the intended platform functionality related to the publishing and data workflows through a web-based
portal. The platform GUI is focused around two main types of user assets – data pages and
transformations. This section discusses the basic UI features and technologies that have been used in
the implementation of the platform interface.

2.1.1 Features

The user interface utilizes the backend APIs to implement the intended platform functionalities in
interactive and graphical ways. The main features are as follows:

 User management – provides user-friendly log-in and log-out functions

 Data publishing and access – user interface that supports easy publishing of data

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 9 / 22

 Data exploration – a basic search and browse interface intended for users that are external
to the platform

 Dashboard – user interface that provides an overview and management of the main types of
user assets – data pages and transformations

 Interactive Data cleaning and transformation GUI – datagraft.net provides full integration
with the Grafterizer user interface (described in detail below).

 API access management – user interface for management of API keys that can be used to
access the platform APIs available for each particular user

Details on the individual features and how they are accessed can be found in section 2.2.

2.1.2 Implementation of the platform interface

The datagraft.net platform is built on modern web technologies and frameworks, like bootstrap3 ,
jquery4, d3js5 and highcharts6.

2.2 Data cleaning and transformations development

DataGraft supports activities related to data cleaning and transformation of data that are used to
produce processed tabular data or RDF triples and host it on the DataGraft platform. These two
functionalities have been implemented in the user interface tool Grafterizer7. Grafterizer (referred to as
Grafter GUI in deliverable D2.2) is a graphical tool for specifying data cleaning and transformation
workflows which consist of two steps (shown on figures below):

 Pipeline specification (Figure 2) – specification of individual steps for tabular data cleaning and
preparation for mapping to RDF

Figure 2. Data cleaning (pipeline)

 Specification and execution of RDF mapping (Figure 3) – mapping of prepared data to a linked
data ontology or vocabulary and generating corresponding RDF triples

3 http://getbootstrap.com/
4 https://jquery.com/
5 http://d3js.org/
6 http://www.highcharts.com/
7 https://github.com/dapaas/grafterizer

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 10 / 22

Figure 3. Transformation of data to RDF

The current version of Grafterizer supports features related to the specification, editing, management
and storage of such data transformations. The tool has been fully integrated with the datagraft.net
platform (see Figure 4) and is available for public use online.

Figure 4. Screenshot of the Grafterizer UI

2.2.1 Grafterizer features

The Grafterizer tool provides an interactive user interface with a wide array of supported functionality
useful in the process of cleaning and transforming data:

 Live preview - Grafterizer interactively displays the result of the tabular clean-up or
transformation steps in a side-panel. It also retains a view of the original version of the
uploaded tabular dataset. Additionally, in case errors in the transformation or RDF mapping
are present, it provides an integrated error reporting capability.

 Forking of existing transformations – the user interface allows users to create copies of
transformations by simply clicking a button.

http://datagraft.net/

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 11 / 22

 Specifying and editing data cleaning (pipeline) steps – the supported clean-up and
transformation functions that can be performed on tabular data can be added, edited,
reordered or deleted. All functions are parametrised and editing allows users to change each
of these parameters within the function with immediate feedback.

 Data page generation – based on the specified RDF mappings, users are able to directly
produce and publish data pages where their data will be available for access through an
endpoint.

 Direct download of resulting data – the cleaned-up/transformed data from Grafterizer (both
CSV and mapped RDF) can be directly accessed and downloaded locally.

 Customisation – data clean-up and transformation can be heavily customised through
embedding custom code, both as individual clean-up steps, or as parameters to certain steps.
In addition, developers can directly edit the resulting Clojure code and see the result in
Interactive mode.

Details on how the aforementioned features are implemented and available to users are published in
the user documentation and video tutorials, discussed in sections 2.3.2 and 2.3.3.

2.2.2 Grafterizer implementation

Grafterizer is an evolution of the Grafter GUI as described in deliverable D2.1. As such, it is
implemented as a graphical wrapper over the Grafter8 library and Graftwerk service developed as part
of D4.2. Grafter is a Clojure library that implements reusable, autonomous data transformations and
RDF publishing. Grafterizer allows users to specify Grafter transformations in a much easier and more
intuitive manner, compared to the traditional approach of coding in Clojure. It also provides instant
feedback alongside the other features described in the previous section.

The Grafterizer interface works by submitting the transformation under development to the Graftwerk
backend service along with the data to be transformed. Depending on the request Graftwerk will then
either generate a preview of the transformed data that the UI can display, or return the transformed
data.

The current version of Grafterizer is available as open source software under the Eclipse Public
License v1.0 at GitHub. The tool has been implemented in AngularJS9 as a web application using
state-of-the-art web frameworks, libraries and other technologies including:

 Grafter - Transformation API & DSL described in D4.2

 Graftwerk – A backend service for executing grafter transformations and returning
transformation previews. Described in D4.2.

 AngularUI – user interface suite for the AngularJS library.

 Angular Material – implementation of Material Design in AngularJS.

 Angular Loading Bar – automatic loading bar control for AngularJS.

 Angular Breadcrumb – AngularUI module for web page breadcrumbs.

 Font Awesome – symbols library used in buttons and graphics.

 jsedn – library for parsing and generation of Grafter/Clojure code.

2.3 Flow, user documentation, tutorials

Throughout the development of the datagraft.net platform, a set of documents have been produced,
which are oriented towards the development team and/or end users of the platform. This section
describes the output of documentation activities.

8 http://grafter.org/
9 https://angularjs.org/

http://grafter.org/
http://angular-ui.github.io/
https://material.angularjs.org/
http://chieffancypants.github.io/angular-loading-bar/
https://github.com/ncuillery/angular-breadcrumb
http://fortawesome.github.io/Font-Awesome/
https://github.com/shaunxcode/jsedn

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 12 / 22

2.3.1 Wireframes

In order to ensure a smooth user experience, during the implementation of the datagraft.net user
interface, we have developed a set of wireframes. The wireframes depict a set of flows depending on
the user type. There are three main flows:

 New users – depicting how new users can sign in and create their first data page

 Returning users – depicting how existing users can browse through their resources and
perform actions on them

 Non-signed users – shows platform functionality available to users outside the platform such
as searching and viewing datasets

The wireframes are available in Appendix A: DataGraft Wireframes Design. Note that the wireframes
represent a simplified view of the content of the individual pages. The final implementation does not try
to use the depicted UI elements literally, but a variation of them, which ensures a better look and feel
of the user interface.

The user documentation and tutorials for datagraft.net have been designed to cover the full
functionality of the platform. These consist of a set of scenario-based videos, a user documentation
document, and a set of developer API specifications. The user documentation and developer API
specifications are accessible through links, whereas the scenario-based videos have been embedded
into the datagraft.net homepage.

2.3.2 Scenario-based videos

In order to showcase the supported functionality of the datagraft.net platform, we have developed two
scenarios for usage. These have then been enacted and recorded, so that users can have a full visual
demonstration of different platform capabilities. The two scenarios focus on the two main aspects of
the platform – i.e., data transformation and datasets hosting, exploration and querying.

The data transformation scenario shows how users can create a simple data transformation over a
small example tabular dataset, specify an RDF mapping, and generate RDF triples based on the
transformation. Further, it displays how users are able to share and reuse transformations from the
cataloguing services of the platform. The video is available on the home page of datagraft.net.

The dataset hosting, exploration and querying scenario displays how users are able to do the data
management basics. It shows how the user interface can be used to publish data directly from an RDF
format, or through a data transformation. It also shows the data workflows and data pages
management functionality available to each user to control their resources on the platform. Lastly, it
demonstrates how unsigned users may gain access to the published datasets and use the platform
provided endpoint to access the data. The video is available on the home page of datagraft.net.

2.3.3 User documentation

In addition to the scenario-based videos that have been developed, we provide a user documentation,
which details the individual user controls available in the datagraft.net GUI. It is screen-focused, so
that the available user options on each navigation screen are explained. The documentation is
available at datagraft.net/documentation.

2.3.4 API documentation

Apart from graphical interfaces, the datagraft.net provides a set of RESTful APIs that can be used to
access the various services of the platform. Details on how to use each individual API have been
detailed in the datagraft.net API documentation. It is divided into different sections that describe
different aspects of the programmatic interfaces:

 General aspects – endpoint specification; security and authentication; internal dataset
representation model; data exchange standards for requests

 RESTful APIs – accessing datasets catalog; accessing transformations catalog; working with
RDF repositories; executing data transformations

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 13 / 22

The API specification has been done using API blueprint 10 and published in the platform at
datagraft.net/documentation using aglio11.

2.4 Transformations Management service

This service is an integration component between the transformations execution engine (Graftwerk),
the catalogue services and the data layer (DaaS), exposing a simple API for clients to transform their
data. It is also responsible for transformations definitions management (CRUD) to support reusable
and repeatable transformations functionality. The transformations management is accessible via the
Transformations Catalogue service APIs.

Figure 5. Transformations Management service

On Figure 5 is the general workflow for applying transformations on user’s data and storing the result
into the data layer. The service APIs offer rich variety of parameters for flexible customisation of the
transformation process:

 Input data can be retrieved either from the data layer (pre-existing data) or it can be supplied
with the request by the user

 The result from the transformation application can be stored in the data layer (tabular data or
RDF) or it can be delivered directly to the user

 The transformation definition (actual transformation) can also be retrieved from the
Transformations Catalogue service or it can be provided with the user request. Additional
parameters specific to the transformation invocation can also be provided (result type: RDF or
tabular; transformation command, etc.)

The complete API documentation is provided in the Appendix here and at URL:
https://datagraft.net/documentation.

2.5 Transformations Catalogue service

The support for persistence and lifecycle management of transformations definitions is the main
responsibility of the transformations catalogue service. It supports the major CRUD operation, as well
as search for pre-existing transformations.

Each transformation definition is accompanied by its metadata: title, description, ownership, inputs and
outputs specifications and others.

10 https://apiblueprint.org/
11 https://github.com/danielgtaylor/aglio

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 14 / 22

In order to align with the metadata representation for datasets we extended the DCAT model with
support for transformations (Figure 6). The new type of objects (dapaas:Transformation) shares a lot
of metadata properties of datasets. However, there are some specific properties for which we use
specific namespace.

Figure 6. DCAT extension for transformations

This model represents data transformations as instances of dapaas:Transformation where the actual
transformation definition is referred by clojureDataID and jsonDataID.

The new API supporting the transformations catalogue and management is aligned with the datasets
catalogue APIs from WP1. It supports:

 New transformation registration;

 Existing transformation update;

 Transformations search and catalogue on metadata;

 Accessing the actual transformation;

 Transformations removal.

The complete API is provided in the Appendix B: API Documentation sections.

2.6 User Management & Access Control

The user management services are responsible for maintaining user profiles and authentication
mechanisms. All functionalities and APIs from v1 of the platform are supported in the final prototype.
The new features are support for API keys authentication – a flexible approach for managing access
control to protected resources (datasets or transformations). The essence of this approach is that the
user authenticates with API keys (instead of using main profile credentials) to the various services of
the platform. A single account may have different API keys, which can be enabled, disabled or deleted
and thus the access to certain resources can be granted, temporary disabled or discontinued. In case
of API key loss or being compromised, a replacement key can easily be issued.

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 15 / 22

The API keys can also be temporal, expiring after certain period of time or permanent. The service
APIs (except the management services) accept authentication only with API keys, i.e. data access
services, transformation services, catalogues.

The following Figure 7 demonstrates the workflow for issuing and using the API keys. Depending on
the request type, the key generated is temporal or permanent.

Figure 7. API keys usage

API documentation is included in the Appendixes here and at: https://datagraft.net/documentation.

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 16 / 22

3 Conclusion

This document described the updated version of the platform-as-a-service (PaaS) layer of the DaPaaS
platform, more recently known as DataGraft and deployed at DataGraft.net. The development of the
platform was directed towards support of data cleaning and transformation applications based on
Grafter. Significant improvement has been made in the user interface supporting Grafter
transformations creation and editing. The underlying platform services have been extended to serve
the new demands for transformations management and persistence. Towards the public offering of
DataGraft, the access control and user authentication mechanisms have been extended to allow
flexible access to the resources of the platform to external users or applications.

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 17 / 22

4 Appendix A: DataGraft Wireframes Design

4.1 Flow 1: create first data page

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 18 / 22

4.2 Flow 2: dashboard actions

4.3 Flow 3: search and explore data

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 19 / 22

5 Appendix B: API Documentation

5.1 Transformations Management API

DESCRIPTION METHOD URL INPUT OUTPUT

Performs PIPE
transformation with
Graftwerk and
loads the result in
certain repository

POST /grafter/tra
nsformatio
n/pipe

Result placeholder specification:

'result-distribution' - URI of
existing distribution (catalogue)
'result-file' - the name for the
result file
'result-type' - mime type of the
result (application/edn or
text/csv)

Transformation spec:
'transformation-id' - the id of the
specific Grafter transformation to
be used or ...
'transformation-code' - (file
attachment) inline transformation
code
'command' - the command in the
transformation to be executed

input specification:
 'input-file' - (file attachment)
input file
or
'input-distribution' - URI of the
distribution to be reused

Operation
completion
status (HTTP
response
code)

Performs GRAFT
transformation with
Graftwerk and
loads the result in
certain repository

POST /grafter/tra
nsformatio
n/graft

Result placeholder specification:
'result-distribution' - target
distribution to store the result
'repository-graph' - optional
graph in the repository

Transformation spec:
'transformation-id' - the id of the
specific Grafter transformation to
be used
... or ...
'transformation-code' - (file
attachment) inline transformation
code
'command' - the command in the
transformation to be executed

 input specification:
 'input-file' - (file attachment)
input file
or
'input-distribution' - URI of the
distribution to be reused

Operation
completion
status (HTTP
response
code)

Performs data
transformation with

POST /grafter/tra
nsformatio

Transformation spec:
'transformation-id' - the id of the

response from
Graftwerk

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 20 / 22

Graftwerk and
directly returns the
result

n/preview specific Grafter transformation to
be used
... or ...
'transformation-type' - 'graft' or
'pipe'
'command' - the command in the
transformation to be executed
'input-distribution' - the input
file from a distribution

request body (multipart)
- 'input-file' - input file
- 'transformation-code' - (file)
inline transformation code
(alternative to transformation-id)

5.2 Transformations Catalogue API

DESCRIPTION METHOD URL INPUT OUTPUT

List
transformations

GET /transformatio
ns/catalog

HTTP Headers:
Accept - serialization format:

 application/ld+json

 application/rdf+xml

 ... any RDF type

showShared - shows shared
transformations as well. Valid
values (y|n), defaults to 'n'

List of
transformations
catalogue
records using the
DCAT vocabulary
in

RDF or JSON-LD

Search for
transformations
(on metadata)

GET /transformatio
ns/search?q=
...

HTTP Headers:

Accept - serialization format
showShared - shows shared
transformations as well. Valid
values (y|n), defaults to 'n'

q - plain text query

List of
transformations
catalogue
records in DCAT

Get transformation
description

GET /transformatio
ns

HTTP headers:

transformation-id - URI of the
transformation, taken from the
catalogue

Accept - serialization format
(same as above)

Complete
application
description using
the DCAT
vocabulary

Create a new
transformation

POST /transformatio
ns

Content-Type -
"multipart/mixed",
"multipart/form-data"

Attachments:

meta - transformation
metadata as RDF or JSON-
LD. Use 'Content-type' to
determine the metadata format

tr-clojure - the code of the
transformation as Clojure

 tr-json - the JSON
serialization of the

URI of the new
transformation in
the format:

{"@id":"http://dap
aas.eu/..."}

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 21 / 22

transformation.

The transformation code parts
are optional and might be
managed separately

Update a
transformation

PUT /transformatio
ns

Content-Type -
"multipart/mixed",
"multipart/form-data"

transformation-id - URI of the
transformation (unless
metadata is provided!)

Attachments:

meta - transformation
metadata as RDF or JSON-
LD. Use 'Content-type' to
determine the metadata format

tr-clojure - the code of the
transformation as Clojure

tr-json - the JSON
serialization of the
transformation

All parts here are optional so
they can be managed
separately

HTTP result code

Delete a
transformation

DELETE /transformatio
ns

transformation-id - URI of the
transformation to be removed

HTTP result code

Retrieve
transformation
code as Clojure
code

GET /transformatio
ns/code/cloju
re

transformation-id - uri of the
transformation description

Clojure code
(Content-
type:application/x
-clojure)

Retrieve
transformation
code as JSON
code

GET /transformatio
ns/code/json

transformation-id - uri of the
transformation description

Json code
(Content-
type:application/j
son)

Delete the
transformation
clojure code

DELETE /transformatio
ns/code/cloju
re

transformation-id - uri of the
transformation description
containing the code

HTTP result code

Delete the
transformation
JSON code

DELETE /transformatio
ns/code/json

transformation-id - uri of the
transformation description
containing the code

HTTP result code

5.3 API Keys Management

DESCRIPTION METHOD URL INPUT OUTPUT

List the API keys
for the
authenticated user

GET /api_keys -

List of API keys descriptions in
JSON:

[{"api_key":<api_key>,

 "enabled" : true },

...]

Generate a new
API key

POST /api_keys - API key and secret in JSON
format.

D2.3: Open Data PaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 22 / 22

{"api_key": <api_key>,

 "secret" : <secret>}

Note that this is the only time the
service provides the key secret

Generate a new
temporary API key

POST /api_keys/temp
orary

- API key and secret in JSON
format.

{"api_key": <api_key>,

 "secret" : <secret>}

The key expires after 24 hours
and is automatically removed

Enable API key PUT /api_keys/<api_
key>/enable

The API key
as part of the
request URL

HTTP result code

Disable API key PUT /api_keys/<api_
key>/disable

The API key
as part of the
request URL

HTTP result code

Delete API key DELETE /api_keys/<api_
key>

The API key
as part of the
request URL

HTTP result code

