
Copyright DaPaaS Consortium 2013-2015

Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable 1.3

Open DaaS prototype, v.2

Date: 31.07.2015

Author(s):
Marin Dimitrov (Ontotext), Alex Simov (Ontotext), Nikolay Nikolov
(SINTEF), Dumitru Roman (SINTEF)

Dissemination level: PU

WP: WP1

Version: 1.0

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 2 / 19

Document metadata

Quality assurors and contributors

Quality assuror(s) Rick Moynihan (Swirrl), Amanda Smith (ODI), Tom Heath (ODI)

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 24.07.2015
Initial outline and Table of
Contents (TOC)

0.2 27.07.2015 Version for internal review

0.3 28.07.2015 Review comments provided

0.4 29.07.2015 Review comments implemented

1.0 30.07.2015 Final version

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 3 / 19

Executive Summary

This document describes the final version of the Data-as-a-Service (DaaS) prototype developed by
M21 of the project. The deliverable builds upon the previous version D1.2 1 , where the main
architecture design and implementation decisions are described. Here we focus on the updates since
M12, delivering a complete, ready for public use Data-as-a-Service layer as part of the DaPaaS
platform.

This deliverable should be read alongside D2.3 which details the platform-as-a-service (PaaS) layer of
the platform.

There are three major DaaS Layer improvements reported in this deliverable:

 A Cloud-enabled RDF Database-as-a-Service

 Extended support for non-RDF data

 Updated catalogue services

The structure of the report is as follows:

 Revised general architecture description

 Implementation overview – security, multi-tenancy, statistics and monitoring

 RDF database as a service (DBaaS)

 APIs updates description

1 Available via: http://project.dapaas.eu/dapaas-reports

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 4 / 19

Table of Contents

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS... 5

LIST OF FIGURES .. 6

1 INTRODUCTION ... 7

2 DAAS ARCHITECTURE OVERVIEW ... 8

3 IMPLEMENTATION UPDATES ... 8

3.1 RDF DATABASE AS A SERVICE .. 8
3.1.1 Architecture and Implementation .. 9

3.2 CONTENT STORE .. 10
3.3 STATISTICS AND MONITORING ... 11
3.4 NOTIFICATIONS ... 11
3.5 SECURITY & ACCESS CONTROL .. 11

4 DATA CATALOGUE SERVICES .. 12

4.1 CATALOGUE APIS UPDATE .. 12
4.1.1 On-demand RDF database provisioning ... 12
4.1.2 Working with raw data files .. 13

5 DEPLOYMENT DETAILS .. 14

5.1 HARDWARE, OS .. 14
5.2 SOFTWARE (3RD PARTY) .. 14
5.3 DATAGRAFT (BY DAPAAS) COMPONENTS ... 14

6 FINAL REMARKS ... 15

7 APPENDIX A: API DOCUMENTATION .. 16

7.1.1 Datasets descriptions access and management .. 16
7.1.2 Distributions management ... 17
7.1.3 RDF repository management ... 18
7.1.4 Distributions data files access ... 18

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 5 / 19

List of Acronyms

API Application Programming Interface

CSV Comma Separated Values (format)

DaaS Data-as-a-Service

DCAT Data Catalog Vocabulary

JSON JavaScript Object Notation (format)

PaaS Platform-as-a-Service

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

DBaaS Database as a service

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 6 / 19

List of Figures

Figure 1. Data Layer Architecture .. 8
Figure 2. RDF DBaaS Architecture ... 9
Figure 3. Content store .. 10
Figure 4: DCAT model ... 12

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 7 / 19

1 Introduction

This report describes the second version of the Data-as-a-Service layer, supporting the various data
management functionalities of the DaPaaS platform, more recently known as DataGraft and deployed
at DataGraft.net. The descriptions in this deliverable rely on familiarity with previous version D1.2
Open DaaS prototype v12, where the main architecture design and implementation decisions are
presented. The content of this document focuses on the individual sub-components of the integrated
DaaS platform layer, trying to explain their functionality and to give some insights of the
implementation aspects.

The platform implementation is designed for Cloud deployment and usage which is the reason it
integrates and utilizes many services directly from the Cloud service provider. The platform is currently
designed to work with Amazon Web Services (AWS) as a leading Cloud services provider, but it can
be adapted to other providers supporting similar services.

In the following sections we briefly describe the updated architecture of the data layer and then go into
more detailed presentations of the new or updated components since the first platform version (M12).

We have implemented a completely new metadata store based on the Cloud technologies and
referred as RDF Database-as-a-Service (DBaaS). The core of the database is still the GraphDB3 triple
store engine but now supporting flexible extensibility based on current demand and offering as-a-
service.

Another component which was not matured enough in the first platform version is the content store for
non-RDF resources, primarily tabular data files. The component support now the complete set of data
management operations: create, read, update, and delete (CRUD).

The integration component of the data layer, the Catalogue service has also been updated to work
with the new components and to deliver the new functionalities to external components, both for
DataGraft components as well as 3rd party applications.

2 Available via http://project.dapaas.eu/dapaas-reports
3 http://graphdb.ontotext.com

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 8 / 19

2 DaaS Architecture Overview

Figure 1 depicts the latest version of the Data-as-a-Service platform layer. The APIs for accessing the
data layer remained almost unchanged - with no change to the functionalities. The significant
difference with the previous version is moving the data import adapters to the platform layer (WP2)
utilizing the matured data cleaning and transformation capabilities of Grafter4 (WP4).

Figure 1. Data Layer Architecture

3 Implementation updates

Significant improvements have been committed to the Open Data Warehouse component, addressing
scalability, extensibility and resources provisioning aspects. The metadata store (a.k.a. the RDF
database) has been turned into a completely Cloud oriented database as a service (DBaaS). The
content store heavily utilizes the Amazon S35 storage service to provide reliable and highly scalable
storage capabilities for tabular data. The catalogue services have been extended to support the new
features provided by the two types of data stores.

3.1 RDF Database as a Service

The fully managed version of GraphDB6 in the Cloud provides an enterprise-grade RDF database as-
a-service (DBaaS). The users do not need to deal with typical administrative tasks such as installation
and upgrades, provisioning and deployment, backups and restores. DBaaS also ensures database
service availability. The resources consumption is determined by the utilization of the system itself and
it is capable to expand and shrink to match the current demand.

4 http://grafter.org/
5 http://aws.amazon.com/s3/
6 http://graphdb.ontotext.com

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 9 / 19

3.1.1 Architecture and Implementation

From users perspective the RDF DBaaS (implementation of the Metadata Store in Figure 1. Data
Layer Architecture) supports an API for linked data:

 access

 querying

 management.

The internal architecture of this component is much more complex to meet the requirements for
scalability, extensibility and availability on large scale. A detailed and complete architecture is provided
on Figure 2 to demonstrate the complexity of the component.

Figure 2. RDF DBaaS Architecture

The RDF DBaaS follows the principles of micro-service architectures and it is comprised of the
following main components and layers:

 Load balancer7 – the entry point to the RDF database services is the load balancer of the
AWS platform, which will route incoming requests to one of the available frontend nodes. The
load balancer can distribute requests even between instances in different datacenters.

 Frontend routing nodes – the frontend nodes host various micro-services such as: user
authentication, access control, usage metering and quota enforcement for the RDF database-
as-as-service layer. All instances host the same set of stateless front-end services and the
frontend layer is automatically scaled up or down (new instances added or removed) based on
the current system load.

 Database nodes – this layer contain nodes running multiple instances of the GraphDB
database (packaged as Docker 8 containers). Each user has its own database instance

7 http://aws.amazon.com/elasticloadbalancing/

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 10 / 19

(container) and it cannot interfere with the database instance or with the data of the other
users of the platform. The data is hosted on Network-attached storage volumes (EBS9) and
each user/database has its own private EBS volume. Additional OS level security ensures the
proper data isolation and access control. Unlike the other layers of the system, each virtual
machine in this layer hosts only a subset of all the database containers, e.g. database
containers are not replicated across backend servers. Future versions of the system will
introduce container replication as well for the purpose of improved throughput, so that read-
only queries can be distributed among multiple servers hosting same database replica.

 Integration services – a distributed queue and a distributed push messaging service are
used for loose coupling between the various frontend and database nodes on the platform. All
components use publish-subscribe communication model to be aware of the current state of
system. This way, the frontend and the backend layers are not aware of their size and
topology and they can be scaled up or down independently.

 Distributed storage – all user data is stored on the Network-attached Storage (EBS),
whereas static backups and exports are persisted on Amazon S3. Logging data, user data as
well as various configuration metadata is stored in a distributed NoSQL database (AWS
DynamoDB).

 Monitoring services – the AWS cloud provides various metrics for monitoring the service
performance. The RDF DBaaS utilises these metrics in order to provide optimal performance
and scalability of the platform. The different layers of the platform can be automatically scaled
up (to increase system performance) or down (to decrease operational costs) in response to
the current system load and utilisation.

3.2 Content store

The content store component is responsible for persistence and management of various user data
files in tabular format. This serves two purposes:

1. Publishing of raw or processed data files;

2. Availability of data files as inputs for further processing by Grafter10, data cleaning and linked
data generation tool by WP4.

The latter is important for data reuse in different transformation scenarios. The following Figure 3 is a
simplified overview of the content store architecture.

Figure 3. Content store

The data representation comprises of two parts: metadata and the actual data. The metadata
describes the actual content as file formats, names, ownership, licensing, publication/modification
dates.

The content store support all substantial management operations: create, read, update and delete
(CRUD). This functionality is accessible as part of the Catalogue APIs, described in the following
sections.

8 https://www.docker.com/
9 http://aws.amazon.com/ebs/
10 http://grafter.org/

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 11 / 19

The actual implementation uses the Amazon S3 service for data storage and dedicated part of the
RDF DBaaS service for metadata persistence. This component is primarily a file storage service and it
does not do any additional processing on the data.

3.3 Statistics and monitoring

We collect various usage information from all over the system to improve the performance and the
quality of service. On the frontend routing nodes (Figure 2) each user request is logged into a
database serving two purposes:

1. The reporting service generates aggregates usage reports;

2. The usage quota management service receives its input.

The usage metrics collected from the AWS provide us with infrastructure utilization information which
help us to improve the resources consumption management and to identify potential bottlenecks in the
system. This ensures the platform and its associated services are scalable and accessible at all times.

Detailed usage statics (CPU/IO/RAM) collected on the level of user databases (Docker containers)
allows us to better distribute containers by collocating heavy and low utilized databases on the same
hosts.

3.4 Notifications

The notifications component uses a set of predefined metrics and rules to send push notifications
when certain events occur. Such events are new user registrations, new datasets and transformations
availability, as well as events related to infrastructure utilization – components overloading, system
scaling activities, failed or missing components.

As notifications delivery channel the implementation utilizes the Amazon Simple Notification Service11
which is a fast, flexible, fully managed push notification service. The messages of the platform are
delivered mainly as e-mail notifications to the system operators, but the service also supports
notifications as SMS messages to mobile devices.

Notifications senders are monitoring components of the infrastructure (AWS CloudWatch12) as well as
custom components of the DaaS and PaaS layers.

3.5 Security & access control

To ensure adequate protection of users’ data we combine different security techniques on the different
components of the platform. The user access to the platform is done via secured HTTPS/TLS
channels which prevents from sniffing and man-in-the-middle attacks.

The inter-component communication within the platform also deploys HTTPS where it is applicable but
mainly it relies on the Amazon Security Groups and IAM services which strictly defines which
components can communicate with which services.

As an extra measure for data protection we enable encryption on the storage volumes (EBS) and the
S3 service.

The external access to the platform is controlled by API keys which provide access to protected
resources. Anonymous read-only access is also supported for resource where the owner explicitly
allowed this.

11 http://aws.amazon.com/sns/
12 http://aws.amazon.com/cloudwatch/

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 12 / 19

4 Data Catalogue services

The data catalogue services were enriched with support for the new database-as-a-service
implementation as well as the new functionality for CRUD operations over tabular data files. The APIs
are still compliant with the DCAT model (Figure 4) and vocabulary.

Figure 4: DCAT model

The first version of the data catalogue services used the DCAT model to maintain only RDF
repositories mapped to dcat:Distribution. An RDF repository is an autonomous container for RDF data
within the DBaaS. The extended version of the data catalogue services added support for working with
raw tabular data files as well.

RDF repositories, part of DBaaS exploit the dcat:accessURL to provide access to its SPARQL
endpoint. Data files rely on properties like: dcat:downloadURL, dcat:mediaType, dcat:byteSize to
represent their specific aspects. All of them share the common metadata properties like names,
descriptions, dates, etc.

4.1 Catalogue APIs update

The Catalogue APIs appearance have been refactored completely since the previous version (M12),
however the major functionalities are preserved. Therefore the complete Data Catalogue API
description is included in the Appendix A: API Documentation in this document. Here we focus only on
the essential updates.

4.1.1 On-demand RDF database provisioning

Although the catalogue API hides the complexity of RDF database provisioning, there needs to be a
mechanism to control the lifecycle of a database in terms of resources allocation and release
depending on the current needs.

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 13 / 19

Two new API HTTP methods are introduced on the level of distributions which prepare the proper
requests to the DBaaS service and update the catalogue metadata accordingly.

URL METHOD INPUT DESCRIPTION

/distributions/repository PUT Header param:
 distrib-id - uri of the
distribution
 repository-id -
identifier for the new
repository

Provisions RDF repository for
distribution

/distributions/repository DELETE Header param:
 distrib-id - uri of the
distribution
 repository-id -
identifier of the
repository to be
deleted

Releases the RDF repository
allocated for the distribution

4.1.2 Working with raw data files

Each data file containing tabular data (csv, tsv, xls) is represented by a dcat:Distribution object
carrying its metadata properties (size, format, name, …) plus the actual file. Thus the management of
raw data files is brought to operation over DCAT distributions. This reflects on the API which expects
data and metadata on distribution creation or update. For accessing the stored objects the API offers
independent access to the data and metadata.

Below is a summary of the new API methods:

URL METHOD INPUT DESCRIPTION

/distributions POST dataset-id - uri of the dataset
containing the distribution
Content-Type - "multipart/mixed"
Attachments:

 meta – distribution’s
metadata (as RDF or
JSON-LD)

 file - the raw file content

The 'file' attachment is optional
(not applicable for RDF distribu-
tions). The metadata should con-
tain the file metadata (content
type, size, ...)

Creates a new distribution
object belonging to a dataset

/distributions PUT (same as above) Updates an existing distribution
allowing metadata update or
data file replacement

/distributions GET distrib-id - uri of the distribution Retrieves the metadata for the
distribution

/distributions/file GET distrib-id - uri of the distribution Retrieves the actual data file

/distributions DELETE distrib-id - uri of the distribution
to be deleted

Removes the data and the
metadata of the distribution

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 14 / 19

5 Deployment Details

5.1 Hardware, OS

The DaaS platform layer is a completely Cloud-based system deployed on Amazon Web Services
infrastructure. It is designed to flexibly expand or shrink depending on the current resources demand.
The amount of resources required for the data layer depends mainly on the data storage capacities –
amount of data which is hosted.

The following table provides summary the resources (computing nodes) consumed by the platform
with a relative price categories.

Component
CPU
requirements

Memory
requirements

Storage Price

Catalogue & Access control * * * $

DBaaS frontend ** * - $$

DBaaS data node *** *** *** $$$

DBaaS coordinator * * - $

DBaaS Docker registry * * * $

Note: the data nodes are the main items of expenditure but on the other hand they are capable of
hosting (collocate) resources of different users on single machines leading to better resources
utilization.

5.2 Software (3rd party)

The following third party components are supporting the platform:

 Docker platform (containerization)

 Apache Tomcat 7.0 (applications server)

 OpenRDF Sesame framework (RDF management middleware)

 AWS SDK for Java (java libraries for working with the Amazon services)

 Apache CXF framework (web services development framework)

5.3 DataGraft (by DaPaaS) components

The data layer of the platform is organized into several components, most of them packaged as web
applications and exposed as RESTful web services:

 Data access services

 Data import services

 Catalogue services

 User management and access control

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 15 / 19

6 Final Remarks

This document describes the final prototype of the data-as-a-service layer, mature enough for public
offering as a part of the DaPaaS’s deployment on DataGraft.net. In the course of the project the
priorities have been adapted to technological evolution which resulted in some changes of the
direction of platform development. Some components were completely dropped, others turned to be
key factors for the platform and developed as separate products.

The data import adapters were removed from the data layer because of the shift to tabular data
processing and the advances of the Grafterizer/Grafter development. The automated interlinking
functionality was dropped because of the immaturity of the tools initially planned for reuse.

Compliance with emerging standards for Linked Data oriented applications interoperability is still on
focus and we will be working in this direction in the remaining time of the project. We are planning to
put a layer on top of the RDF DBaaS services to expose content as linked data rather than RDF
statements. Currently we are targeting implementations of LDP13.

This report should be read alongside D2.3 which details the platform-as-a-service (PaaS) layer of the
platform.

13 http://www.w3.org/TR/ldp/

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 16 / 19

7 Appendix A: API Documentation

A user friendly version of the API documentation is publicly available at: http://dapaas.github.io/api/.

7.1.1 Datasets descriptions access and management

7.1.1.1 Get dataset description

URL /datasets

HTTP Method GET

Description Get a dataset description (metadata) by id

Inputs HTTP headers:

dataset-id - URI of the dataset, taken from the catalogue
Accept - result serialization format (application/ld+json, application/rdf+xml, …
any standard RDF type)

Response Complete dataset description using the DCAT vocabulary in
RDF or JSON-LD

7.1.1.2 Create dataset description

URL /datasets

HTTP Method POST

Description Create a new dataset description

Inputs HTTP header:

Content-Type - format of the metadata supplied

Message body:

dataset description as RDF or JSON-LD

Note: if the description contains no dataset identifier, the system will generate
one

Response URI of the new dataset in the format:
{ "@id" : "http://dapaas.eu/dataset/4" }

7.1.1.3 Update dataset description

URL /datasets

HTTP Method PUT

Description Update an existing dataset description

Inputs HTTP header:

Content-Type - format of the metadata supplied

Message body:

dataset description as RDF or JSON-LD

Response Operation completion status (HTTP response code)

7.1.1.4 Delete dataset description

URL /datasets

HTTP Method DELETE

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 17 / 19

Description Delete a dataset description with all of its distributions

Inputs HTTP header:

dataset-id - URI of the dataset to be removed

Response Operation completion status (HTTP response code)

7.1.2 Distributions management

7.1.2.1 Get distribution description

URL /distributions

HTTP Method GET

Description Get distribution description by id (contained in the corresponding dataset
description)

Inputs HTTP header:

distrib-id - URI of the distribution, taken from the dataset description

Accept - result serialization format (JSON-LD or RDF)

Response Complete distribution description using the DCAT vocabulary in RDF or JSON-
LD

7.1.2.2 Create distribution description

URL /distributions

HTTP Method POST

Description Create a new distribution description. The request should contain the metadata
for the distribution and optionally the data file of the distribution

Inputs HTTP headers:

dataset-id - URI of the dataset containing the distribution
Content-Type – request message format: multipart/mixed, or multipart/form-
data

Request body attachments:

meta - distribution metadata as RDF of JSON-LD. Use Content-type of the
attachment to specify the metadata format

file - the raw file content (CSV, TSV, XLS, …), This attachment is optional (not
applicable for RDF distributions). The metadata should contain the file metadata
(content type, size, ... see DCAT model for details)

Note: if the meta description contains no distribution identifier, the system will
generate one

Response URI of the new distribution in the format:
{ "@id" : "http://dapaas.eu/distributions/abc" }

7.1.2.3 Update distribution description

URL /distributions

HTTP Method PUT

Description Update an existing distribution description. This API method can be used either
for metadata update or the actual data replacement or both.

Inputs HTTP header:

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 18 / 19

Content-Type – request message format: multipart/mixed, or multipart/form-
data

Request body attachments:

meta - distribution metadata as RDF of JSON-LD. Use Content-type of the
attachment to specify the metadata format

file - the raw file content (CSV, TSV, XLS, …), If provided, the metadata should
contain the file metadata (content type, size, ... see DCAT model for details)

Note: if provided any new file overwrites the previous one.

Response Operation completion status (HTTP response code)

7.1.2.4 Delete distribution description

URL /distributions

HTTP Method DELETE

Description Delete a distribution description

Inputs HTTP header:

distrib-id - URI of the distribution to be deleted

Response Operation completion status (HTTP response code)

7.1.3 RDF repository management

URL /distributions/repository

HTTP Method PUT

Description Provision RDF repository for a distribution

Inputs HTTP headers:

distrib-id - URI of the distribution to contain the new repository

repository-id - identifier for the new repository

Response URL to the newly allocated repository in the form of: {"access-url":<repository
url>}

URL /distributions/repository

HTTP Method DELETE

Description Release the RDF repository allocated for the distribution

Inputs HTTP headers:

distrib-id - URI of the distribution containing the repository

repository-id - identifier for the repository

Response Operation completion status (HTTP response code)

7.1.4 Distributions data files access

URL /distributions/file

HTTP Method GET

Description Accessing the data files of distributions

Inputs HTTP header:

D1.3: Open DaaS prototype, v.2

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 19 / 19

distrib-id - URI of the distribution containing the file

Response The data file in its original format and encoding

