
Copyright DaPaaS Consortium 2013-2015

 Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable D2.2

Open Data PaaS prototype, v.1

Date: 31.10.2014

Author(s):
Brian Elvesæter (SINTEF), Dumitru Roman (SINTEF), Nikolay
Nikolov (SINTEF), Alex Simov (Ontotext) and Marin Dimitrov
(Ontotext)

Dissemination level: PU

WP: WP2

Version: 1.0

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 2 / 45

Document metadata

Quality assurors and contributors

Quality assuror(s) Bill Roberts (Swirrl) and Seonho Kim (Saltlux)

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 26.09.2014
Initial outline and Table of
Contents (TOC)

0.2 15.10.2014 Revised outline

0.3 24.10.2014
Description of the requirements
addressed, data cleaning and app
development

0.4 27.10.2014
User guide for Data Cleaning and
first round of API documentation

0.5 28.10.2014 Ready for internal review

0.6 31.10.2014
Revision addressing reviewers’
comments

1.0 31.10.2014 Final formatting and layout

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 3 / 45

Executive Summary
The main goal of the DaPaaS project is to provide an integrated Data-as-a-Service (DaaS) and
Platform-as-a-Service (PaaS) environment, together with associated services, for open data, where 3rd
parties can publish and host both datasets and data-driven applications that are accessed by end user
data consumers in a cross-platform manner.

This document describes the first version of the PaaS prototype developed for Deliverable D2.2 “Open
Data PaaS Prototype, v.1” as defined in the Description of Work (DoW) of the DaPaaS project. The
PaaS prototype consists of a set of software components that were developed based on the
requirements, design and architecture specification from Deliverable D2.1. The development has been
closely aligned with Deliverable D1.2 “Open DaaS prototype, v.1” in order to ensure seamless
integration.

The software components developed for the first version of the PaaS prototype are:

 User Management & Access Control, which manages user profiles and secure access
control to apps and datasets.

 Data Cleaning & App Development, which provides functionalities for applications
development, and support for data cleaning & transformation and data workflows.

 App Management & Deployment, which gives developers control over the deployed
applications and configuration settings for the application-hosting environment.

 App Catalog for searching and exploring apps and their metadata.

These components are available through the DaPaaS platform and accessible by data publishers,
application developers and data consumers through REST APIs and graphical front-ends. User guides
and API documentation are included in the Appendices of this document.

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 4 / 45

Table of Contents
EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS .. 5

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

1 INTRODUCTION ... 8

2 REQUIREMENTS ADDRESSED BY THE PROTOTYPE .. 9

3 DESIGN AND IMPLEMENTATION OF THE PROTOTYPE .. 12

3.1 INTEGRATION WITH THE DATA LAYER .. 12
3.2 USER MANAGEMENT & ACCESS CONTROL ... 13
3.3 DATA CLEANING & APP DEVELOPMENT ... 14

3.3.1 Data Cleaning & Transformation .. 15
3.3.2 Data Workflows .. 15

3.4 APPLICATIONS MANAGEMENT & DEPLOYMENT .. 17
3.5 APPLICATIONS CATALOG .. 17

4 DEPLOYMENT DETAILS .. 20

5 FUTURE WORK ... 21

5.1 DOCKER (EXTENDING THE APP HOSTING ENVIRONMENT) ... 21
5.2 NOTIFICATIONS ... 21
5.3 GRAFTER GUI ENHANCEMENTS (DATA CLEANING & WORKFLOWS) .. 21
5.4 MANAGEMENT UI.. 22

6 APPENDIX A: USER GUIDE FOR GRAFTER GUI ... 23

7 APPENDIX B: API DOCUMENTATION .. 28

7.1 USER MANAGEMENT API .. 28
7.1.1 Results ... 28
7.1.2 User Services & Web UI Authentication .. 28
7.1.3 Account Service .. 29
7.1.4 API Key Management ... 32

7.2 DATA CLEANING & TRANSFORMATION API .. 33
7.2.1 Transformation application API (Grafter Import) ... 33
7.2.2 Transformations management API .. 33

7.3 APPLICATIONS DEPLOYMENT API ... 34
7.3.1 Deploy application API ... 34

7.4 APPLICATIONS CATALOG API ... 35
7.4.1 Catalog access API .. 35
7.4.2 Applications descriptions access and management API .. 36
7.4.3 Releases management API .. 37

8 APPENDIX C: COMPARISON OF DATA CLEANING & TRANSFORMATION SOLUTIONS . 39

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 5 / 45

List of Acronyms
API Application Programming Interface
CSV Comma Separated Values (format)
DaaS Data-as-a-Service
GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation (format)
PaaS Platform-as-a-Service
REST Representational state transfer
RDF Resource Description Framework
SLA Service Level Agreement
SOA Service Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language
UML Unified Modeling Language

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 6 / 45

List of Figures
Figure 1: Architecture of the PaaS layer .. 12
Figure 2: Architecture of the DaaS layer ... 13
Figure 3: Design of User Management & Access Control ... 13
Figure 4: Development scope for first version of the Data Cleaning & App Development service 14
Figure 5: Overview of the Grafter GUI ... 16
Figure 6: Extended DCAT model ... 18
Figure 7: Grafter GUI with an empty pipeline .. 23
Figure 8: Adding a new pipeline element .. 23
Figure 9: Defining a "drop-rows" pipeline element .. 24
Figure 10: Grafter "drop-rows" function element ... 24
Figure 11: Defining a "make-dataset" pipeline element ... 24
Figure 12: Defining a "derive-column" pipeline element ... 25
Figure 13: Defining custom functions .. 25
Figure 14: Defining a "mapc" pipeline element ... 26
Figure 15: Declaring namespace prefixes ... 26
Figure 16: Example Clojure output from a Grafter GUI pipeline ... 27
Figure 17: User authentication sequence .. 28

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 7 / 45

List of Tables
Table 1: Data Publisher (DP) requirements addressed ... 9
Table 2: Application Developer (AD) requirements addressed .. 9
Table 3: End User Data Consumer (EU) requirements addressed ... 10
Table 4: Application descriptions management ... 18
Table 5: Release descriptions management ... 19
Table 6: Simple dataset ... 23

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 8 / 45

1 Introduction
This report represents supporting documentation for the prototype developed for Deliverable D2.2
“Open Data PaaS Prototype, v.1”. An online integrated version of the DaPaaS platform1, including all
available components from WP1-WP3 (D1.2, D2.2 and D3.2) is available to all consortium members. A
publicly accessible version will be provided at the beginning of year 2, according to the plan.

The goal of this deliverable is to provide:

 The actual software prototype for an Open Platform-as-a-Service (PaaS) infrastructure, and
integrate it with the DaaS prototype provided in WP1, thus providing an integrated DaPaaS
platform.

 Detailed APIs specification and documentation for consumption of the core functionalities of
the PaaS platform.

The PaaS prototype consists of a set of software components that were developed based on the
requirements, design and architecture specification from Deliverable D2.12. The prototype aligns with
Deliverable D1.2 in order to ensure seamless integration.

The rest of this report is structured as follows:

 Section 2 summarises how the prototype addresses the requirements from Deliverable D2.1.

 Section 3 describes the design and implementation of the software components that are
integrated in the PaaS prototype.

 Section 4 describes deployment details for the DaPaaS platform.

 Section 5 outlines future work for the second version of the PaaS prototype.

 Appendix A provides a user guide for the Data Cleaning and Transformation graphical
component developed as part of the PaaS prototype.

 Appendix B documents the APIs of the implemented PaaS software components.

1 http://dapaas.ontotext.com/demo/
2 http://project.dapaas.eu/dapaas-reports/open-paas-requirements-design-architecture-specification

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 9 / 45

2 Requirements Addressed by the Prototype
Deliverable D2.1 outlined a set of requirements for the different roles of the DaPaaS platform, i.e.,
Instance Operator, Data Publisher, Application Developer and End User Data Consumer.

In the first release of the DaPaaS platform, we have primarily focused on addressing the requirements
for the Data Publisher as well as on requirements related to the Application Developer and the End
User Data Consumer. The tables below summarize how the current version of the prototype as of M12
addresses the requirements for these three roles.

Table 1: Data Publisher (DP) requirements addressed

ID Name Brief description of how the current version of the pro-
totype addresses the requirement

DP-01 Dataset import Addressed in D1.2.

DP-02 Data storage & querying Addressed in D1.2.

DP-03 Dataset search & explo-
ration

Addressed in D1.2.

DP-04 Data interlinking Addressed in D1.2.

DP-05 Data cleaning & trans-
formation

The Data Cleaning & Transformation service described in
Section 3.3.1 provides the Data Publisher capabilities to
apply simple data cleanup & transformation (incl. RDFiza-
tion) over legacy data.

DP-06 Dataset bookmarking &
notifications

Addressed in D1.2.

DP-07 Dataset metadata man-
agement, statistics &
access policies

Addressed in D1.2.

DP-08 Data scalability Addressed in D1.2.

DP-09 Data availability Addressed in D1.2.

DP-10 User registration & profile
management

The User Management & Access Control service described
in Section 3.2 allows users to register as a Data Publisher
and gain access to the relevant DaaS services.

DP-11 Secure access to plat-
form

Addressed in D1.2.

DP-12 UI for Data Publisher Addressed in D3.2.

DP-13 Data publishing method-
ology support

Addressed in D4.1.

Table 2: Application Developer (AD) requirements addressed

ID Name Brief description of how the current version of the pro-
totype addresses the requirement

AD-01 Access to Data Publisher
services (DP-01 – DP-
13)

Addressed in D1.2.

AD-02 Data export Addressed in D1.2.

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 10 / 45

AD-03 Develop applications in
state-of-the-art pro-
gramming languages

This first PaaS prototype allows Application Developers to
develop Java-based web applications. For the second ver-
sion of the prototype, the plan is to support additional pro-
gramming languages.

AD-04 Configure application
deployment

Support for application deployment and configuration of
common cloud resources, e.g. database/storage, is related
to requirement AD-05 and will be further supported in the
second version of the DaPaaS platform. Initial support for
graphical widgets is supported in WP3 and will be further
enhanced in the forthcoming Deliverable D3.3.

AD-05 Deploy and monitor ap-
plication

The App Management & Deployment service described in
Section 3.4 provides the Application Developer with an ap-
plication hosting environment where data-intensive applica-
tions can be easily deployed. Tomcat is chosen as the initial
application hosting environment for the DaPaaS platform.
Thus, the current release supports Java-based web applica-
tions packaged as deployable war files.

For the second version of the DaPaaS platform we are con-
sidering to use Docker3 technology in order to have support
for other application environments and programming lan-
guages. Monitoring facilities for the deployed applications
will be supported in the second version.

AD-06 Application metadata
management, statistics
& access policies

The App Catalog described in Section 3.5 allows Application
Developers to describe metadata about their applications.
Support for statistics and access policies will be added in the
second version of the PaaS prototype.

AD-07 UI for Application Devel-
oper

Addressed in D3.2.

AD-08 Application development
methodology support

Guidelines for Data Publisher is addressed in D4.1. These
guidelines are a first step towards supporting the overall
application development process. Further guidelines, specif-
ically for the Application Developer, will be provided in the
form of online user guides as part of the future work.

Table 3: End User Data Consumer (EU) requirements addressed

ID Name Brief description of how the current version of the pro-
totype addresses the requirement

EU-01 User registration & profile
management

The User Management & Access Control service de-
scribed in Section 3.2 allows users to register as End User
Data Consumers and manage their profiles.

EU-02 Search & explore da-
tasets and applications

Addressed in D1.2.

EU-03 Datasets and applica-
tions bookmarking and
notifications

Addressed in D1.2.

EU-04 Mobile and desktop GUI
access

Addressed in D3.2.

3 https://www.docker.com/whatisdocker/

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 11 / 45

EU-05 Data export and down-
load

Addressed in D1.2.

EU-06 High availability of data
and applications

The DaPaaS platform provides a software-as-a-service
infrastructure in which datasets and apps will be hosted by
the DaPaaS project. This initial release of the DaPaaS
platform caters primarily to Data Publishers and provides
services that allow publishers to easily publish their da-
tasets as RDF.

To ensure high availability of data and applications we will
follow a two-step strategy.
 The first step is to attract Data Publishers to register

and use the platform so that high availability of data
can be achieved.

 The second step will be to attract Application Develop-
ers, who will create applications using the published
data, ensuring high availability of applications.

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 12 / 45

3 Design and Implementation of the Prototype
Figure 1 depicts the main software components, their relationships and associated APIs of the
Platform Layer. The software components of the Platform Layer extend the capabilities offered by the
Data Layer in five main service categories plus an administration service:

 User Management & Access Control, which manages user profiles and secure access
control to apps and datasets.

 Data Cleaning & App Development, which provides functionalities for applications
development, and support for data cleaning & transformation and data workflows.

 Notification, which provides functionality for subscribing to apps and datasets events and
notifications.

 App Management & Deployment, which gives developers control over the deployed
applications and configuration settings for the application-hosting environment.

 Apps Catalog for searching and exploring apps and their metadata.

 Administration, which allows the management and monitoring of the DaPaaS Platform,
focusing on aspects related to the users, apps, datasets and services of the platform.

Figure 1: Architecture of the PaaS layer

3.1 Integration with the Data Layer
As can be seen from Figure 1 above, the components of the PaaS layer use the APIs of the DaaS
layer (highlighted in Figure 2 below). The first version of the PaaS prototype makes use of APIs for:

 catalog, extended to support Applications;

 update, access and query for data access;

 import/export, specifically an adapter for the Grafter execution engine (which is also
highlighted in Figure 2 below).

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 13 / 45

Figure 2: Architecture of the DaaS layer

3.2 User Management & Access Control
For the first version of the User Management & Access Control service we decided to simplify the
access control as the primary role of the DaPaaS platform is to attract Data Publishers and Application
Developers who are going to publish public datasets and host public apps ensuring that they are
available to a wide range of users. Access control is needed to restrict the users that are allowed to
update and modify the datasets.

Figure 3: Design of User Management & Access Control

The design shown in Figure 3 considers both users and apps as accounts that have access to
datasets through access groups. The design conforms to the following rules:

 Datasets are either public or private

 Accounts (i.e., users and applications) have read or write access to datasets

 Only owners (i.e. user) can grant read or write access to datasets

Detailed User Management API documentation is provided in Section 7.1 in Appendix B.

APIs

DCAT & VoID Update Access & Query Import / Export

Caching

Interlinking

Notifications

Open Data Warehouse

Metadata
Store

Facets &
Full‐text
Search

Content Store

In‐
database
Analytics

Adapters

CSV RDB2RDF Grafter

Statistics

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 14 / 45

3.3 Data Cleaning & App Development
The Data Cleaning & App Development service is a collection of data cleaning and design-time app
development services:

 App Configuration, which is responsible for providing standardized mechanisms to configure
cloud resources (e.g. data storage), DaaS services and UX components to be used by the
deployed instance of the app at run-time.

 Data Cleaning & Transformation, which provides additional data management functionalities
that complement Data Layer functionality with capabilities for data cleaning (duplicate
removal), data transformation, as well as data mapping and alignment.

 Data Workflows, which provides the capability to define simple data-driven pipelines that use
functionality from the Data Layer (e.g., import/export and publish data) and the added
functionality offered by the Data Cleaning & Transformation component in order to support
simple sequential data transformations.

Figure 4 illustrates the development scope for the first version of the Data Cleaning & App
Development service. After an analysis of existing Data Cleaning & Transformation solutions, Grafter4
(developed in WP4) was chosen as the underlying framework, and will be extended with RESTful
services to support the Data Workflows component (developed in WP2).

Figure 4: Development scope for first version of the Data Cleaning & App Development service

The Data Workflows component provides a graphical UI for defining a Grafter transformation, which is
a simple data workflow consisting of two main steps5:

1. Specify a pipeline, of tabular transformations for data cleaning and transformation.

2. Create the graph fragments, resulting in the generation of an RDF graph.

The resulting Grafter transformation is registered as a publishing/import service on the DaPaaS
platform (WP1) for the Data Publishers to use.

4 https://github.com/swirrl/grafter
5 http://grafter.org/example/index.html

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 15 / 45

3.3.1 Data Cleaning & Transformation
In Deliverable D2.1 we provided an initial analysis of data integration solutions, where Web-Karma6
and OpenRefine7 were identified as two promising open source solutions, on which to base the
development of the Data Cleaning & Transformation service in the PaaS prototype. Following this
initial analysis it became apparent that the Grafter framework planned in WP4 of DaPaaS could also
be a promising candidate. It provided a good opportunity for a closer collaboration between partners in
the project.

When a first release of the Grafter prototype became available, we did a further analysis of the
solutions, comparing Grafter to amongst others Web-Karma and OpenRefine. The analysis compared
the different data input, cleaning and transformation features of the solutions, i.e.:

 Dataset operations

 Column operations

 Row operations

 RDF related features

The spreadsheet in Appendix C documents the comparison of the features. Note that the comparison
distinguishes between Grafter, Incanter and Grafter+Incanter. Incanter8 is a modular Clojure library
with many features (e.g., mathematical functions, statistical functions, data manipulation functions,
etc.) of which the data manipulation functions are used by the Grafter framework.

While Web-Karma and OpenRefine are two promising solutions, our analysis shows that there is a
tight coupling of UI and backend functionality that hinders distributions, and furthermore makes it
difficult to refactor the source code to expose programmatic service APIs. Grafter was designed to
provide a separate backend library of functions, on top of which there could be an independent
graphical UI.

3.3.2 Data Workflows
Since Grafter does not currently provide a graphical user interface, we decided to build upon it and
thus implement the Data Workflow component as. This yields several advantages:

 Grafter already covers 90+ % of the functionality in Web-Karma and OpenRefine.

 Can easily define a graphical DSL on top of the available APIs.

 Able to expose programmatic and service APIs for batch processing and enable distribution.

 Able to expose more functions as GUI elements. (Suggested icons for some functions are
shown in the spreadsheet in Appendix C.)

The Grafter GUI is a graphical wrapper over the Grafter library that is used to define a Grafter
transformation data workflow and its implementation as Clojure code. This transformation can then be
executed over any number of input datasets that conform to the same schema, in order to eventually
transform them from their tabular representation (in CSV or Excel spreadsheet format) into semantic
data (in RDF).

6 http://www.isi.edu/integration/karma/
7 http://openrefine.org/
8 http://incanter.org/

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 16 / 45

Figure 5: Overview of the Grafter GUI

Currently, the Grafter GUI supports the creation of a Grafter transformation through the following
features:

 Specify the Grafter pipeline

o user-defined Clojure functions – can be used in the pipeline to transform the data

o pre-defined Grafter APIs – a set of APIs that have been wrapped into UI elements.

 Create the graph fragments

o defining namespace prefixes – used as shorthand when building the RDF
representation

For more details, please see the example transformation in Appendix A.

The development of the Grafter GUI is made available as open source software under the Eclipse
Public License v1.0 at GitHub9. The implementation of the Grafter GUI uses the following technologies
and frameworks:

 jQuery10 and jQuery UI11 are used for user interface elements (dialogs, buttons, selectors,
etc.)

 appendGrid12 is used for implementing the table-based input.

 Font Awesome13 is used to depict some of the symbols in the graphics.

 CodeMirror14 is used for code editing, and syntax highlighting of the Clojure code. Eventually,
we are also planning to implement autocompletion.

 jsedn 15 is used for generation of the Grafter/Clojure code, which defines the Grafter
transformation.

 Grafter is used for running the output code from the GUI.

 Leiningen16 is used for building the Clojure project and creating the corresponding JAR file.

9 https://github.com/dapaas/grafter-gui
10 http://jquery.com/
11 http://jqueryui.com/
12 https://appendgrid.apphb.com/
13 http://fortawesome.github.io/Font-Awesome/
14 http://codemirror.net/
15 https://github.com/shaunxcode/jsedn

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 17 / 45

3.4 Applications Management & Deployment
This first PaaS prototype allows Application Developers to develop Java-based web applications and
deploy them on the platform infrastructure. For the second version of the prototype, we will support
additional programming languages.

The App Management & Deployment service provides the Application Developer with an application
hosting environment where data-intensive applications can be easily deployed. Apache Tomcat is
chosen as the initial application hosting environment for the DaPaaS platform. Thus, the current
release supports Java-based web applications packaged as deployable war files.

Tomcat offers convenient support for remote management of all phases of the applications lifecycle:
deployment, starting, stopping, undeployment, status checking, etc. without a need for restarting the
environment. On top of this management layer, we built services abstracting the actual deployment
details, tightly integrated with the Application Catalog services. Thus some of the routines are
happening in the background while the Application Developer is managing the metadata descriptions.

In fact, the only direct interaction of the user with the deployment services is when a new web
application (.war file) has to be deployed. This can be achieved by using the Application deployment
API (Section 7.3) where the implementation takes care of:

 the deployment of the application,

 starting the application, and

 registering it in the apps catalogs.

The removal of metadata descriptions from the applications catalog is integrated within the
undeployment functionality of Tomcat, so the user does not have perform any additional cleaning up.

For the second version of the DaPaaS platform we are considering using Docker technology in order
to provide support for other application environments and programming languages. Monitoring
facilities for the deployed applications is also planned to be supported in the second version.

3.5 Applications Catalog
On the metadata level the datasets and applications share many common properties, which is the
reason we adopted the DCAT vocabulary here as well. To cover the specific applications aspects we
added additional extensions to the model and the metadata vocabulary. D1.2 provides an overview the
W3C's DCAT recommendation and its direct applicability to datasets. Here we focus on the extended
model for application descriptions. Figure 6 highlights the extensions proposed and implemented in
the first prototype of the platform.

16 http://leiningen.org/

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 18 / 45

Figure 6: Extended DCAT model

Taking the same approach as with dataset having different distributions, here we introduce two new
classes:

 dapaas:Application - a general description of an application, abstracting the concrete
versions, access mechanisms, etc.

 dapaas:Release - a description of a specific version of the application in terms its concrete
realisation (access and download URLs, versioning specification, etc.).

Each application may refer to one or more releases via the newly introduced property dapaas:release.
It connects the abstract descriptions with the consumption point of applications' functionalities.

The extended parts reuse as many properties as possible from their counterparts in the original DCAT
model.

Table 4 and Table 5 provides an overview of the API functionality. Detailed API documentation and the
underlying implementations are described in Section 7.4. The functionalities in terms of API design are
similar to the ones from the datasets catalog (D1.2).

Table 4: Application descriptions management

Method URL Description

GET /users/{user-id}/appcatalog List a catalog of applications for the user (owned
and shared)

GET /users/{user-id}/applications Get details about certain application (meta data)

POST /users/{user-id}/applications Create a new application description

PUT /users/{user-id}/applications Update an existing application description

DELETE /users/{user-id}/applications Delete an application (including all releases)

GET /users/{user-id}/applications/search Search for applications based on meta-data (titles,
descriptions, keywords)

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 19 / 45

Table 5: Release descriptions management

Method URL Description

GET /users/{user-id}/releases Get full description of a release

POST /users/{user-id}/releases Create a new release (description)

PUT /users/{user-id}/releases Update an existing release

DELETE /users/{user-id}/releases Delete a release

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 20 / 45

4 Deployment Details
The first version of the WP2 PaaS prototype is hosted together with the WP1 DaaS prototype, thus
forming an integrated DaPaaS platform. The DaPaaS platform runs on two machines as described in
Deliverable D1.2, one high-performance machine designated for the data warehouse with 64GB RAM,
and a second moderate-performance machine for the DaaS and PaaS services running the operating
system Ubuntu 12.04.2 LTS. Additionally for application deployment & execution environment we use
a separate machine with moderate characteristics (16GB RAM, Intel i7 CPU). Its only purpose is to run
third party web applications (Application Developers support) in an isolated environment.

The following 3rd party software components are required to support the PaaS layer of the DaPaaS
platform:

 Apache Tomcat 7.0 (applications container)

 Apache CXF framework (web services development framework)

The PaaS layer of the platform consists of several components that are packaged as web applications
or exposed as RESTful web services:

 User management and access control

 Data cleaning & transformation service which consists of three main components

o Grafter GUI client component (JavaScript and HTML5)

o Grafter server component (creates jar file for Grafter pipeline and registers it)

o Grafter execution engine (described in D1.2)

 Catalog services

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 21 / 45

5 Future Work
For the second release of the DaPaaS platform we will add further functionality addressing the needs
of the Application Developer and the End User Data Consumer, while at the same time strengthening
the capabilities offered to the Data Publisher.

5.1 Docker (extending the App Hosting Environment)
The Applications Management & Deployment service described in Section 3.4 provides the Application
Developer with an application hosting environment where data-intensive applications can be easily
deployed. Tomcat is chosen as the initial application hosting environment for the DaPaaS platform. For
the second version of the DaPaaS platform we are considering to use Docker.

Docker17 defines a format for bundling an application and all its dependencies into a single object
which can be transferred to any Docker-enabled machine, and executed there with the guarantee that
the execution environment will be the same. This allows the packaged applications to run in different
environments without being reconfigured again. In addition the Docker tool offers features for
application deployment, automatic build, versioning and component re-use. Docker also provides an
API18 for automating and customizing the creation and deployment of containers.

5.2 Notifications
Support for notifications were not part of the first release since it was regarded as “nice to have” but
not critical. This decision was taken in order to focus on more important service capabilities aimed at
the Data Publisher. For the second release of the DaPaaS platform we will implement a notification
service that supports:

 Publishing and subscribing different types of events and notifications for datasets.

 Publishing and subscribing events and notifications for users and apps.

5.3 Grafter GUI enhancements (Data Cleaning & Workflows)
The first version of the Grafter GUI and the corresponding Grafter services provide a Data Publisher
with functionality to define and deploy a Grafter pipeline for publishing datasets based on tabular data
(i.e., CSV files and Excel spreadsheets) as RDF data in the DaPaaS platform. Improvements to the
Grafter GUI include two important graphical features:

 Preview functionality: In order to provide better support for defining a proper Grafter
pipeline, it is useful to see the effects of each step, i.e., the result of each Grafter function as
they are applied. This will be implemented as a preview window, showing the changes to the
tabular data (e.g., displaying the new column with the transformed data). By stepping
(forward/backward) through the pipeline functions the effect of the selected function in the
pipeline are shown directly to the user. This makes it easier for the user to verify that the
pipeline being defined is correct.

 Mapping to RDF: After the pipeline is defined you use the Grafter graph function to translate
the data table created by the pipeline into a sequence of RDF statements. A graphical UI for
defining the RDF graph fragments will be implemented. This UI may be extended to support
the loading of one or more ontologies that are used in the generation of the RDF graph.

In addition to the two graphical features described above, we also plan to add support for:

 Graphical domain-specific language (DSL): The DSL will allow users to express multiple
Grafter pipelines (with common “sublines”) as a graphical model. In order to ensure that the
graphical DSL will be usable, we will focus on simplicity, e.g., no support for conditional
branching or other complex data workflow operations. The idea is to keep it simple, with
input/output that can be fed into different pipelines.

17 https://www.docker.io/
18 http://docs.docker.io/en/latest/api/

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 22 / 45

5.4 Management UI
For the first prototype the setup and configurations are done manually, by installing and running
different services and inspecting various system logs for system status. The system health and
performance monitoring is also partially concerned. For the next version of the platform, the Instance
operator will be supported by a unified UI management console providing single place for exploring
different aspects of the platform as well as ability to perform different management routines - system
checks and monitoring, usage quota enforcements, resources provisioning, etc.

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 23 / 45

6 Appendix A: User Guide for Grafter GUI
The Grafter GUI can be used to define data pipelines based on the Grafter library, which are used to
perform data transformation.

As an example we will use a simple dataset that consists of three columns - name, sex and age:

Table 6: Simple dataset

Name Sex Age
Alice f 34
Bob m 63

The Grafter GUI main elements are shown on the following figure:

Figure 7: Grafter GUI with an empty pipeline

The data transformation pipeline consists of several elements that are defined using the '+' button in
the interface. Clicking it prompts the following dialog:

Figure 8: Adding a new pipeline element

The dialog provides users a choice of several pre-defined Grafter functions that are supported by UI
elements. They can be used to easily and quickly define steps from the pipeline. For example, the
'drop-rows' Grafter function is shown in the following:

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 24 / 45

Figure 9: Defining a "drop-rows" pipeline element

The function can be used to delete a certain number of rows from the input dataset. In this case, users
need to only specify that number.

In our case, we need to delete the first row that contains the column names as it will not be used later
on when we create the RDF representation of the data.

Selecting the 'Create function' button will create a new element that corresponds to the selected
Grafter function or custom code. In the case of the drop-rows, it is as shown in the following image:

Figure 10: Grafter "drop-rows" function element

Other supported Grafter APIs are:

 "make-dataset" – maps a set of columns of a dataset to a set of column names. The column
names are surrounded by square brackets ('[', ']') where each output column name begins
with a colon (':').

Figure 11: Defining a "make-dataset" pipeline element

In our example, we will use the make-dataset to set up aliases (":name", ":sex", and "age") of all of
the columns that we use in the transformation (which are in fact all three of them).

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 25 / 45

 "derive-column" – creates a new output column which is derived from a set of input columns
using a specified function (defined by the user) or using a prefix (when 'URI-ifying' literals).

Figure 12: Defining a "derive-column" pipeline element

For the purposes of our example, we will create a new column, denoted by ":person-uri" where we
URI-ify the input people's names using a prefix "base-id". Prefixes are defined using the "Edit
prefixes…" dialog, an example of which is shown later on in the tutorial.

In case we need any other custom functions, we can define them through the use of another dialog,
where users can input Clojure code:

Figure 13: Defining custom functions

This dialog can be invoked from selection boxes when adding new pipeline elements (available for
each element where this is needed), or from the "Create custom function…" button. In our case, we
will define two functions – "->gender", and "->integer". The former is used to map the letter denoting
the gender of the person, to its full name. The latter is used to parse a string into an integer.

 "mapc" – for each row in the dataset, applies a function to a particular column (defined by a
key). Each column name is preceded by a colon (':').

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 26 / 45

Figure 14: Defining a "mapc" pipeline element

The above picture shows how we associate the custom functions we already defined with the
according column keys denoting the columns containing the ages of people (":age"), and their gender
(":sex").

Through the "Edit prefixes…" dialog, users are able to define the prefixes that are eventually used as
shorthand when building the RDF graph or that are used in the pipeline to URI-ify our data. They are
defined in a table, where a prefix name is associated with an according URI, as shown in the following
figure:

Figure 15: Declaring namespace prefixes

Each pipeline definition corresponds to a certain Clojure representation (which also includes the
Grafter library and other miscellaneous imports). The output Clojure code can be previewed by clicking
the "Preview Grafter pipeline…" button:

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 27 / 45

Figure 16: Example Clojure output from a Grafter GUI pipeline

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 28 / 45

7 Appendix B: API Documentation

7.1 User Management API

7.1.1 Results

All services return some meaningful HTTP status code along with the result - mostly 40x for erroneous
requests, 20x for successful execution

7.1.2 User Services & Web UI Authentication

Authentication is performed via HTTP form-based authentication. The authentication flow goes like
this:

Figure 17: User authentication sequence

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 29 / 45

7.1.3 Account Service

7.1.3.1 Login with username and password

PUT /accounts/login

BODY:
{
"username" : "<username>",
"password" : "<password>",
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.2 Login with Google+ ID

PUT /accounts/login

BODY:
{
"google_id" : "<google_id>",
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.3 Login with Twitter ID

PUT /accounts/login

BODY:
{
"twitter_id" : "<twitter_id>",
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.4 Login with Facebook ID

PUT /accounts/login

BODY:
{
"facebook_id" : "<facebook_id>",
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.5 Signup (create new account)

POST /accounts/

BODY:
{

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 30 / 45

"username" : "<login name>",
"password" : "<pass>",
"role" : "<dapaas_role>",
"name" : "<User name>",
"email" : "<email>"
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.6 Signup (create new account) with Facebook

POST /accounts/

BODY:
{
"facebook_id" : "<facebook_id>",
"role" : "<dapaas_role>",
"name" : "<User name>",
"email" : "<email>"
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.7 Signup (create new account) with Twitter

POST /accounts/

BODY:
{
"twitter_id" : "<twitter_id>",
"role" : "<dapaas_role>",
"name" : "<User name>",
"email" : "<email>"
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.8 Signup (create new account) with Google+

POST /accounts/

BODY:
{
"google_id" : "<google_id>",
"role" : "<dapaas_role>",
"name" : "<User name>",
"email" : "<email>"
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 31 / 45

7.1.3.9 Logout

PUT /accounts/logout

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.10 Login Status

GET /accounts/login_status

RESULT
{"status":"AUTHENTICATED"}
or
{"status":"NOT_AUTHENTICATED"}

7.1.3.11 Get details

GET /accounts/details

RESULT:
{
"username" : "<login name>",
"email" : "<email>",
"name" : "<user name>",
"role" : "<dapaas_role>",
"phone_num" : "<phone_num>",
"addr_1" : "<addr_1>",
"addr_2" : "<addr_2>"
}

7.1.3.12 Add/Update details

PUT/PATCH /accounts/details

BODY:
{
"username" : "<login name>",
"email" : "<email>",
"name" : "<user name>",
"role" : "<dapaas_role>",
"phone_num" : "<phone_num>",
"addr_1" : "<addr_1>",
"addr_2" : ""<addr_2>"
}

RESULT
OK //SUCCESS
{"message" : "<error_message>"} //ERROR

7.1.3.13 Change password

PUT /accounts/password

BODY:
{
"new_password" : "<password>"
}

RESULT

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 32 / 45

OK //SUCCESS
{"error_message" : "<message>"} //ERROR

7.1.3.14 Password reset request

POST /accounts/password/reset

BODY:
{
"email" : "<email>"
}

RESULT
OK //SUCCESS
{"error_message" : "<message>"} //ERROR

7.1.3.15 Password reset confirmation

PUT /accounts/password/confirm

BODY:
{
"email" : "<email>",
"new_password" : "<password>",
"token" : "verification token"
}

RESULT
OK //SUCCESS
{"error_message" : "<message>"} //ERROR

7.1.4 API Key Management

7.1.4.1 Get API Keys

GET /api_keys/

BODY:
[
{"api_key" : "<api_key>", "enabled" : true},
...
]

7.1.4.2 New API Key

POST /api_keys/

RESULT
{"api_key" : "<api_key_id>", "secret" : "<api_key_secret>"} //SUCCESS
{"error_message" : "<message>"} //ERROR

7.1.4.3 Enable API Key

PUT /api_keys/<api_key>/enable

RESULT
OK //SUCCESS
{"error_message" : "<message>"} //ERROR

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 33 / 45

7.1.4.4 Disable API Key

PUT /api_keys/<api_key>/disable

RESULT
OK //SUCCESS
{"error_message" : "<message>"} //ERROR

7.1.4.5 Delete API Key

DELETE /api_keys/<api_key>

RESULT
OK //SUCCESS
{"error_message" : "<message>"} //ERROR

7.2 Data Cleaning & Transformation API
This section is identical to the one in the annexes of D1.2 as this API is related to the two work
packages.

7.2.1 Transformation application API (Grafter Import)

7.2.1.1 Apply transformation

URL /dapaas-import-services/grafter/apply

HTTP Method POST

Description Performs CSV-2-RDF data transformation with Grafter and loads the result in
certain repository

Inputs

(HTTP headers)

publisher - the publisher ID from the catalogs
repository-url - target repository to store the result
repository-graph - optional graph in the repository
transformation-id - the id of the specific Grafter transformation to be used

CSV data upload as multipart attachment
 file - the CSV content
 name - the original file name of the CSV file

Response Operation completion status (HTTP response code)

7.2.2 Transformations management API

7.2.2.1 Register transformation

URL /dapaas-import-services/grafter/register

HTTP Method POST

Description Registers a new transformation into the DaPaaS platform

Inputs HTTP headers:

transformation-id - the id for the new Grafter transformation
description - free text description of the transformation, what it does, what it
requires, etc.

jar binary as multipart attachment
 file - the jar content
 name - the original file name of the jar file (it is not necessary to be the same

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 34 / 45

as the ID)

Response Operation completion status (HTTP response code)

7.2.2.2 List transformations

URL /dapaas-import-services/grafter/list

HTTP Method GET

Description Lists all available (registered) transformations in the platform

Inputs -

Response JSON array of objects representing registered transformations (name and
description).
Example:
[

 {

 "id' : "myGrafter1",

 "descr":"This is my transformation text"

 },

...
]

7.2.2.3 Unregister transformation

URL /dapaas-import-services/grafter/unregister

HTTP Method DELETE

Description Unregisters a transformation from the platform

Inputs HTTP header:

transformation-id - the id of the specific Grafter transformation to be
unregistered (removed)

Response Operation completion status (HTTP response code)

7.3 Applications Deployment API

7.3.1 Deploy application API

7.3.1.1 Deploy application

URL /appdeploy

HTTP Method POST

Description Deploys a web application packaged as a WAR file, belonging to certain release
of an application from the catalog.

Inputs

(HTTP headers)

release - the release URI from the metadata
new-url-hint - preferred new URL endpoint suffix. The implementation checks
for collisions and generates a new unique name derived from this parameter
value.

a) remote war for deployment:
app-url - location of the war file on the Web + credentials (if it is necessary)

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 35 / 45

app-user - user name
app-pass - password

b) war upload as multipart attachment (local file)
 file - the content
 name - the original file name of the war file

Response The new application deployment URL like:

{"@id":"http://project.dapaas.eu/applications/newapp"}

Note: the service implementation is responsible to update the release meta data
property: accessURL

7.4 Applications Catalog API

7.4.1 Catalog access API

7.4.1.1 Get application catalog

URL /users/{user-id}/appcatalog

HTTP Method GET

Description List user's applications as well as public or shared ones with the user

Inputs user-id - the owner id

HTTP headers:
Accept - serialization format for the result:

 application/ld+json
 application/rdf+xml or any RDF type

showShared - includes public and shared applications in the result as well.
Valid values are 'y' and 'n'

Response List of application catalog records using the extended DCAT vocabulary in
RDF or JSON-LD

7.4.1.2 Search applications

URL /users/{user-id}/applications/search

HTTP Method GET

Description Search for applications by keywords on meta data (titles, descriptions, etc.)

Inputs user-id - the owner id

HTTP header:
Accept - serialization format for the result:

 application/ld+json
 application/rdf+xml or any RDF type

URL parameter:

q - the search query expression (plain text)

Response List of application catalog records using the extended DCAT vocabulary in
RDF or JSON-LD

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 36 / 45

7.4.2 Applications descriptions access and management API

7.4.2.1 Get application description

URL /users/{user-id}/applications

HTTP Method GET

Description Get a application description (meta data) by id

Inputs user-id - the owner id

URL parameter:
id - URI of the application, taken from the catalog

HTTP header:
Accept - result serialization format

Response Complete application description using the extended DCAT vocabulary in
RDF or JSON-LD

7.4.2.2 Create new application description

URL /users/{user-id}/applications

HTTP Method POST

Description Create a new application description

Inputs HTTP headers:

user-id - the owner id
Content-Type - format of the data supplied

Application description as RDF or JSON-LD as request body

Note: if the description contains no @id, the system will generate one

Response URI of the new application in the format:
{ "@id" : "http://dapaas.eu/application/app1" }

7.4.2.3 Update application description

URL /users/{user-id}/applications

HTTP Method PUT

Description Update an existing application description

Inputs user-id - the owner id

HTTP header:
Content-Type - format of the data supplied

Application description as RDF or JSON-LD as request body

Response Operation completion status (HTTP response code)

7.4.2.4 Delete application description

URL /users/{user-id}/applications

HTTP Method DELETE

Description Delete an application description with all of its releases

Inputs user-id - the owner id

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 37 / 45

HTTP header:
id - URI of the application to be removed

Response Operation completion status (HTTP response code)

7.4.3 Releases management API

7.4.3.1 Get release description

URL /users/{user-id}/releases

HTTP Method GET

Description Get a release description by id (contained in the corresponding application
description)

Inputs user-id - the owner id

URL parameter:
id - URI of the release, taken from the application description

HTTP header:
Accept - result serialization format

Response Complete release description using the extended DCAT vocabulary in RDF or
JSON-LD

7.4.3.2 Create new release description

URL /users/{user-id}/releases

HTTP Method POST

Description Create a new release description

Inputs user-id - the owner id

URL parameter:

app - URI of the application containing the release

HTTP header:
Content-Type - data input format

release description as RDF or JSON-LD in the request body

Note: if the description contains no @id, the system will generate one

Response URI of the new release in the format:
{ "@id" : "http://dapaas.eu/release/v123." }

7.4.3.3 Update release description

URL /users/{user-id}/releases

HTTP Method PUT

Description Update an existing release description

Inputs user-id - the owner id

URL parameter:

app - URI of the dataset containing the distribution

HTTP header:

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 38 / 45

Content-Type - data input format

Release description as RDF or JSON-LD in the request body

Response Operation completion status (HTTP response code)

7.4.3.4 Delete release description

URL /users/{user-id}/releases

HTTP Method DELETE

Description Delete a release description

Inputs user-id - the owner id

URL parameter:
distrib - URI of the release to be deleted

Response Operation completion status (HTTP response code)

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 39 / 45

8 Appendix C: Comparison of Data Cleaning & Transformation solutions

Feature Grafter Incanter Icons Grafter+Incanter Web-Karma OpenRefine/GRefine

Data input,
cleaning and

transformation
datasets

load a dataset
from CSV or

XLSX
open-all-datasets

open-all-datasets
Import -> From

File

Create Project (This
Computer) -> Choose

Files

load dataset from
XML, JSON

 Import -> From
File

Create Project (This
Computer) -> Choose

Files
load dataset from

RDF/XML,
RDF/N3, ODF,

text (fixed width,
line-based), PC-

Axis

statements
(supports all

RDF
serializations)

statements (supports all

RDF serializations)
Create Project (This

Computer) -> Choose
Files

import an ontology Planned Feature Planned Feature
Import -> From

File
(openrefine RDF
extension menu)

import from web
service

Import -> From

Service

Create Project (Web
Addresses) ->
Choose Files

load dataset from
Avro (Hadoop)

 Import -> From
File

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 40 / 45

load a dataset
from database

incanter.sql/rea
d-dataset

incanter.sql/read-
dataset

Import ->
Database

Table/Using SQL

load multiple
datasets

open-all-datasets

open-all-datasets
(import several

times from
different sources)

Create Project (This
Computer) -> Choose

Files

create datasets
from different data

make-dataset to-dataset

make-dataset; to-
dataset

(by mapping to
an ontology)

GREL, Clojure,
Jython + Column

editing

take a subset of
columns from a

table
all-columns

all-columns

(during the
mapping process
can select only

several columns)

(by manually editing
columns out)

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 41 / 45

concatenate
datasets (by row

or column)
 conj-cols; conj-

rows

conj-cols; conj-rows (by mapping to
an ontology)

GREL, Clojure,
Jython + Column

editing

right join $join

$join (by mapping to
an ontology)

GREL, Clojure,
Jython + Column

editing

merge datasets by
columns/rows

conj-cols; conj-

rows
 conj-cols; conj-rows

Glue Columns
(drop-down

menu)

GREL, Clojure,
Jython + Column

editing

table
normalization

 melt melt

Glue Columns,
Split Values, Fold

(drop-down
menu)

can be achieved, but
in multiple steps

mass apply
function

 grid-apply grid-apply PyTransform

filter data by value
(query)

grep
$where; query-

dataset; set-
data

grep; $where; query-

dataset; set-data
PyTransform

build a test
dataset (as a

subset of the input
data)

test-dataset /
take-rows

 test-dataset / take-rows
(automatically

done for
PyTransform)

(automatically by
default)

remove duplicates
from dataset

Not Required as
triples are

idempotent

Not Required as
triples are idempotent

using Duplicates
Facet

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 42 / 45

build a lookup
table from a
selection of

columns

build-lookup-
table build-lookup-table PyTransform

columns

get a column of
data (by column

id)

resolve-column-
id

 resolve-column-id
(all columns

available from the
UI)

(all columns available
from the UI)

sort data by
column values

 $order $order groupBy (for non-
tabular data)

(drop-down menu) ->
Sort…

apply summary
function (avg, min,

max, ...) to a
column

 $rollup $rollup

PyTransform
GREL, Clojure,

Jython apply
mathematical

functions
(trigonometric,

arithmetic)

(comprehensiv
e library of all
kinds of math
and statistical

functions)

(comprehensive library
of all kinds of math and

statistical functions)

add a new column
to the dataset
(also derived)

derive-column
(optional
functional
argument)

add-column;
add-derived-

column

derive-column (optional
functional argument);

add-column; add-
derived-column

Add Column
(drop-down
menu) - only

empty

(drop-down menu) ->
Add column based on

this column…/Split
into several columns

categorize column categorical-var;
get-categories

 categorical-var; get-
categories

(done
automatically on

import)

(drop-down menu) ->
Facet -> Default

facets

get column names column-names col-names
column-names; col-

names

(done
automatically on

import)

(done automatically
on import)

rename column(s) rename-columns rename-cols rename-columns;
rename-cols

Rename (drop-
down menu)

(drop-down menu) ->
Rename this column

replace column(s) replace-cols replace-cols PyTransform GREL, Clojure,
Jython

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 43 / 45

reorder column(s) swap reorder-cols swap; reorder-cols

(drop-down menu) ->
Move column

left/right/to
beginning/to end

modify column
with a custom

function
mapc transform-col mapc; transform-col

GREL, Clojure,
Jython

get a subset of the
data by specifying

columns
columns columns

(by mapping to
an ontology)

using different
filter for selection

columnar data
(column 'Facets')

(drop-down menu) ->
Facet -> Custom text

or numeric
facet/Customized

facets
retrieve column

keys that are not
in the data set

invalid-column-
keys

 invalid-column-keys PyTransform

rows

extract the row
with the column
name (the first

row)

move-first-row-
to-header

 move-first-row-to-
header

(done
automatically on

import)

(done automatically
on import)

drop rows from
dataset

drop-rows, take-
rows drop-rows, take-rows

PyTransform

(drop-down menu for
'All') -> Edit rows ->

Remove all matching
rows

apply function to
rows

map-rows (rows
of all columns),
mapc (rows of

selected
columns)

map-rows (rows of all
columns), mapc (rows
of selected columns)

(by selection of the
rows with GREL,
Clojure, Jython)

add a row Planned Feature Planned Feature Add Row (drop-
down menu)

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 44 / 45

get a subset of the
data (by

specifying rows)
rows rows PyTransform

(by selection of the
rows with GREL,
Clojure, Jython)

individual
values

clustering of cells'
values

(drop-down menu) ->
Edit cells -> Cluster

and edit…

select an item
from a dataset sel sel (by selection) (by selection)

RDF related features

combine RDF
graph from input

triples
graph-fn graph-fn

(not needed
because
ontology

mapping covers
all data)

(not needed
because GRefine

RDF skeleton
covers all possible

input data)

create RDF triples graph; triplify graph; triplify
(drop-down menu

for model) ->
Publish -> RDF

(openrefine RDF
extension menu) ->
Edit RDF skeleton…

extract subjects,
predicates,

objects or context
out of an RDF

statement

subject,
predicate,object,

context

subject,
predicate,object, context

apply prefix to a
column of data prefixer prefixer PyTransform

GREL, Clojure,
Jython

map data to
ontology

graph-fn graph-fn UI (clicking on
red circle)

(using the menu of
the GRefine

extension) Edit RDF
Skeleton…

D2.2: Open Data PaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 45 / 45

convert RDF literal
into type

literal-datatype-
>type

 literal-datatype->type
(not needed
because of
ontology)

(not needed
because of

ontology/rdfs)

cast string to RDF
Literal

(s str [lang-or-
uri])

 (s str [lang-or-uri])
(not needed
because of
ontology)

(not needed
because of

ontology/rdfs)

specify one/more
(semantic) type of

a column(s)

Set Semantic
Type (drop-down

menu)

(using the menu of
the GRefine

extension) Edit RDF
Skeleton… and

selecting the types

automatic
reconciliation of

entities

Extract Entities
(drop-down

menu)

(using the menu of
the GRefine

extension) Add
reconciliation

service…

General noteworthy
functionality

undo/redo
transformation(s)

N/A as grafter is
a DSL - though
Grafters design
will enable this
feature to be
built easily in

the Grafter GUI

N/A

N/A as grafter is a DSL
- though Grafters

design will enable this
feature to be built

easily in the Grafter
GUI

(using Command
History)

(using Undo/Redo
menu)

map geospatial
data (Google

Earth)

(using a special
ontology)

draw paths with
geospatial data
(Google Earth)

batch mode supported

supported supported
BatchRefine +

exported Undo/Redo
as JSON

