
Copyright DaPaaS Consortium 2013-2015

Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable 1.2

Open DaaS prototype, v.1

Date: 31.10.2014

Author(s):
Marin Dimitrov (Ontotext), Alex Simov (Ontotext), Dumitru Roman
(SINTEF), Brian Elvesæter (SINTEF)

Dissemination level: PU

WP: WP1

Version: 1.0

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 2 / 28

Document metadata

Quality assurors and contributors

Quality assuror(s)
Bill Roberts (Swirrl)
Seonho Kim (Saltlux)

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 30.09.2014
Initial outline and Table of
Contents (TOC)

0.2 15.10.2014 Revised outline

0.3 24.10.2014 APIs, components descriptions

0.4 27.10.2014 Requirements addressed sections

0.5 30.10.2014 Internal review comments

0.6 30.10.2014
Updates according to internal
review

1.0 31.10.2014 Final version

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 3 / 28

Executive Summary

The main goal of the DaPaaS project is to provide an integrated Data-as-a-Service (DaaS) and Platform-
as-a-Service (PaaS) environment, together with associated services, for open data, where 3rd parties
can publish and host both datasets and data-driven applications that are accessed by end-user data
consumers in a cross-platform manner.

This document describes the first version of the DaaS prototype developed by M12 of the project. The
DaaS prototype consists of a set of software components that were developed based on the
requirements, design and architecture specification from Deliverable D1.1.

The development has been performed in parallel with the activities on Deliverable D2.2 “Open Data
PaaS prototype, v.1” in order to ensure seamless integration and components reuse.

The software components developed and integrated for the first version of the prototype are:

 Data Warehouse – a set of storage and data access facilities covering the core functional
requirements of the DaaS layer. The main focus of the component is oriented towards linked
data management in RDF.

 Data Import/Export services – a set of adapters enabling the users to load different types of
data by transforming them into RDF as well as exporting the original uploaded data files or the
results from the RDF transformation.

 Data access & querying – a set of APIs allowing different types of access to the data in the
repositories. This includes accessing directly RDF data, querying the data via SPARQL
expressions, updating the data via SPARQL 1.1 Update.

 Datasets Catalog services are means for providing metadata for the (linked) data stored in the
DaaS platform.

These components are available through the DaPaaS platform and accessible for data publishers,
application developers and data consumers through REST APIs and graphical front-ends. User guides
and API documentation are included in the Appendices of this document.

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 4 / 28

Table of Contents

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS... 5

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

1 DAAS REQUIREMENTS & ARCHITECTURE ... 8

2 PROTOTYPE DESIGN AND IMPLEMENTATION.. 11

2.1 OPEN DATA WAREHOUSE .. 11
2.1.1 Metadata Store .. 11
2.1.2 Content Store ... 12
2.1.3 Full-Text Search .. 12

2.2 IMPORT & EXPORT ADAPTERS ... 12
2.2.1 CSV import ... 12
2.2.2 RDB import ... 13
2.2.3 Grafter import .. 13
2.2.4 RDF export .. 13
2.2.5 Raw data export ... 13

2.3 ACCESS, QUERY & UPDATE... 13
2.3.1 SPARQL Query & Update .. 13
2.3.2 OpenRDF Sesame APIs .. 14

2.4 CATALOG SERVICES .. 14
2.4.1 DCAT .. 14
2.4.2 Catalog APIs ... 15

2.5 COMPONENT WORKFLOW .. 17

3 DEPLOYMENT DETAILS .. 19

3.1 HARDWARE, OS, ETC ... 19
3.2 SOFTWARE (3RD PARTY) .. 19
3.3 DAPAAS COMPONENTS .. 19

4 FUTURE WORK ... 20

5 ANNEXES .. 21

5.1 API DOCUMENTATION... 21
5.1.1 Data Import APIs .. 21
5.1.2 Data Export APIs .. 23

5.2 DATA CATALOG APIS ... 23
5.2.1 Catalog access API .. 23
5.2.2 Datasets descriptions access and management .. 24
5.2.3 Distributions management ... 25

5.3 DATA ACCESS APIS .. 26
5.3.1 RDF direct data access APIs ... 26
5.3.2 SPARQL Query & Update APIs ... 27

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 5 / 28

List of Acronyms

API Application Programming Interface

CSV Comma Separated Values (format)

DaaS Data-as-a-Service

DCAT Data Catalog Vocabulary

FOAF Friend of a Friend (vocabulary)

JSON JavaScript Object Notation (format)

PaaS Platform-as-a-Service

R2RML Relational to RDF Mapping Language

RDF Resource Description Framework

SLA Service Level Agreement

SOA Service Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Lan-
guage

VoID Vocabulary of Interlinked Datasets

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 6 / 28

List of Figures

Figure 1. Data Layer Architecture .. 11

Figure 2. DCAT model ..15

Figure 3. Prototype Components Overview ..17

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 7 / 28

List of Tables

Table 1: Data Publisher (DP) requirements addressed .. 8
Table 2: Application Developer (AD) requirements addressed ... 9
Table 3: End-Users Data Consumer (EU) requirements addressed 9
Table 4: Instance Operator (IO) requirements addressed .. 9
Table 5, Datasets management ..16
Table 6. Distributions management...16

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 8 / 28

1 DaaS Requirements & Architecture

This document represents supporting documentation for Deliverable D1.2 (Prototype) and addresses
requirements outlined in Deliverable D1.11 . An online integrated version of the DaPaaS platform2 ,
including all available components from WP1-WP3 (D1.2, D2.2 and D3.2) is available to all consortium
members. A publicly accessible version will be provided at the beginning of year 2, according to the
plan.

The goals of this deliverable are to provide:

 A more detailed architecture specification and identification of the main components of the DaaS
layer

 An overview description of the first prototype implementation

 Detailed APIs specification and documentation for consumption of the core functionalities of the
DaaS layer

Deliverable D1.1 outlined a set of requirements for the DaPaaS platform. The tables below summarize
how the current version of the prototype as of M12 addresses these requirements.

Table 1: Data Publisher (DP) requirements addressed

ID Name Brief description of how the current version of the proto-
type addresses the requirement

DP-01 Dataset import The Data Publisher is provided with a set of functionalities to
import data from various formats into the data warehouse as
RDF. The first prototype supports:

 direct RDF data import

 transform tabular CSV data into RDF

 transform relational data into RDF

 arbitrary complex transformations based on Grafter

DP-02 Data storage & query-
ing

Each dataset provides SPARQL endpoint for querying and up-
dates. Additionally, and API is provided for bulk loading of RDF
data.

DP-03 Dataset search & ex-
ploration

A Catalog service based on DCAT vocabulary is available.
Search is implemented on top of metadata fields like titles, de-
scriptions, keywords.

DP-04 Data interlinking The semi-automatic interlinking requires means (UI) for creating
simple mappings which is not available by M12; support of this
functionality by the DaaS layer is planned for year 2.

DP-06 Dataset bookmarking
& notifications

This requirement is not considered as core functionality for the
first prototype implementation and will be addressed during
year 2.

DP-07 Dataset metadata
management, statis-
tics & access policies

The Catalog service takes care of management of metadata.
The access control policies are also part of the meta descrip-
tions.

DP-08 Data scalability The current load of the system does not cause scalability is-
sues. Further investigations on this feature will be considered
with the increase of data that will be made available on the plat-
form during year 2.

1 http://project.dapaas.eu/dapaas-reports/deliverable-11-open-daas-requirements-design-architecture-specification
2 http://dapaas.ontotext.com/demo/

http://project.dapaas.eu/dapaas-reports/deliverable-11-open-daas-requirements-design-architecture-specification
http://dapaas.ontotext.com/demo/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 9 / 28

DP-09 Data availability The current prototype does not cause data availability issues.
Further investigations on this feature will be considered with the
increase of data that will be made available on the platform dur-
ing year 2.

DP-11 Secure access to plat-
form

Security aspects are not considered a priority for the first proto-
type. The public access to the platform will be secured by
HTTPS and considered during year 2.

Table 2: Application Developer (AD) requirements addressed

ID Name Brief description of how the current version of the proto-
type addresses the requirement

AD-01 Access to Data Pub-
lisher services (DP-01
– DP-13)

The Application Developer has the same access to the APIs as
the Data Publisher has (see table above).

AD-02 Data export The Application Developer has the ability to export RDF data
(repository level export); sub-graphs export using SPARQL
CONSTRUCT queries; and export of raw non-RDF data.

Table 3: End-Users Data Consumer (EU) requirements addressed

ID Name Brief description of how the current version of the proto-
type addresses the requirement

EU-02 Search & explore da-
tasets and applica-
tions

The end-users can search and browse the metadata of both
datasets and applications as long as they are allowed by the
access control mechanisms.

EU-03 Datasets and applica-
tions bookmarking
and notifications

This requirement is not considered as core functionality for the
first prototype implementation and will be addressed during
year 2.

EU-05 Data export and
download

Refer to AD-02.

EU-06 High availability of
data and applications

This feature will be investigated once significant amounts of
data apps will be made available on the platform during year
2.

Table 4: Instance Operator (IO) requirements addressed

ID Name Brief description of how the current version of the proto-
type addresses the requirement

IO-02 Platform performance
monitoring

Partial support for measuring the resources consumption of the
system is in place (various metrics from AWS Cloud Watch3), a
centralized component for collecting the various metrics and be-
ing able to represent it in adequate way is part of plans for year
2.

IO-03 Statistics monitoring
(users, data, apps, us-
age)

The first version of the prototype will be accessible to limited
number of users; this requirement is not considered as a high
priority issue and will be reconsidered with the public version of
the DaPaaS platform.

3 http://aws.amazon.com/cloudwatch/

http://aws.amazon.com/cloudwatch/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 10 / 28

IO-05 Policy/quota configura-
tion and enforcement

Quota enforcement will be addressed in the next version of the
platform by adoption of Docker4 containers for both datasets
and applications isolation.

4 https://www.docker.com/

https://www.docker.com/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 11 / 28

2 Prototype Design and Implementation

Figure 1 depicts the main software components, their relationships and associated APIs of the Data
Layer as defined in D1.1. The software components of the Data Layer provide the following main
capabilities:

 Open Data Warehouse (Storage & Access)

 Data & Metadata Catalog

 Query & Update

 Import & Export

 Interlinking

 Notifications & Statistics

Figure 1. Data Layer Architecture

2.1 Open Data Warehouse

The implementation of the warehouse comprises two major components responsible for hosting the
various types of data. The primary focus of the first prototype is oriented towards working with RDF data
and therefore the metadata store is the key component in the platform. Any other types of data can only
be stored and retrieved.

2.1.1 Metadata Store

The purpose of this component is to provide storage and querying capabilities for linked data
represented as RDF (i.e. Linked Data store). The underlying implementation is supported by the
GraphDB (formerly known as OWLIM) engine, accessible via the OpenRDF Sesame framework.
Extended overview of the architecture and functionalities of the two systems was provided in D1.1. Here
we focus on the actual deployment and the Sesame APIs we utilize for the prototype.

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 12 / 28

2.1.1.1 Multi-tenant model

To ensure isolation of the data between the users of the platform our strategy is to instantiate separate
repository for each user so that no two users share the same container. The users can have more than
one repository but each repository can have exactly one owner. Collaboration between different users
on the same data still can be achieved by sharing the repository by using the access control mechanisms
of the system. Of course, only the repository owner can grant or restrict access to the data.

2.1.1.2 Security & access control

On creation of a new repository, the user is provided with unique access URL to the repository. The
access control mechanism guarantees that only this user can reach the URL unless he or she granted
access to another user. The owner of the repository controls the access type for other users: read-only,
read-write or none.

2.1.2 Content Store

The primary purpose of the content store in the first prototype is to keep track of the non-RDF files being
uploaded into the system. Such files are usually inputs for the data import adapters where their content
passes certain transformations before it reaches its final destination into the repository.

To be able to restore the original content and formatting of the data it is necessary that each file is stored
in its original form into the content store prior to any subsequent processing. The content store itself is
based on Amazon S35 service, providing secure, durable, highly-scalable object storage.

The mechanism for retrieval of original data is via the Raw Data Export API (see Section 5.1.2).

2.1.3 Full-Text Search

For full-text search (FTS) support we reuse the one already integrated into the metadata store
(GraphDB). It is based on Apache Lucene6, a high-performance, full-featured text search engine written
entirely in Java.

GraphDB supports full text search capabilities using Lucene with a variety of indexing options and the
ability to simultaneously use multiple, differently configured indices in the same query. The query
language which is also used for index management is based on extension of the SPARQL and thus
delivering the FTS functionality to any SPARQL component straight forward.

In order to use Lucene full-text search in GraphDB a Lucene index must first be computed. Before being
created, each index can be parameterised in a number of ways using SPARQL 'control' updates. This
provides the ability to:

 select what kinds of nodes are indexed (URIs/literals/blank-nodes)

 select what is included in the 'molecule' (entities relevant text) associated with each node

 select literals with certain language tags

 choose the size of the RDF 'molecule' to index

 select alternative analysers

 select alternative scorers

2.2 Import & Export Adapters

2.2.1 CSV import

The CSV import service uses generic algorithm for representing tabular data into RDF. Each CSV row
is transformed to a single RDF entity, having its properties extracted from the corresponding row cells.
The presence of a file header is required for generating property names properly. The implementation

5 http://aws.amazon.com/s3/
6 http://lucene.apache.org/core/

https://confluence.ontotext.com/display/DaPaaS/Deliverable+D1.1#DeliverableD1.1-FulltextSearch
https://confluence.ontotext.com/display/DaPaaS/Deliverable+D1.1#DeliverableD1.1-Import%2FExport
http://aws.amazon.com/s3/
http://lucene.apache.org/core/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 13 / 28

is based on the Apache Any237 toolkit. The service accepts as input either CSV content directly or URL
where the actual data is accessible. The result data is loaded directly into the data warehouse in a RDF
repository specified in advance.

Complete API specification is provided in Section 5.1.1.

2.2.2 RDB import

This service provides data import functionality from RDBMS. The result is RDF data loaded in the data
warehouse. The service is compliant with the two leading RDB-to-RDF W3C standards for mapping
relational data into RDF. As input the service requires the parameters of the source RDBMS, the result
RDF repository and the mapping strategy to be applied. In the simpler case a Direct Mapping 8
transformation can be applied without any additional resources required. In the case of R2RML 9
application, the actual transformation document should be provided as well. For the latter there is no
default mapping so the transformation document is expected to be created in advance.

Complete API specification is available in section 5.1.1.

2.2.3 Grafter import

This adapter is a wrapper of the Grafter execution engine intended to be applied repeatedly using
transformations created in advance. Each transformation is a bundled artefact of transformation
instructions, registered in the system and having a unique identifier. At runtime the service expects an
identifier of the transformation to be applied, the source data (CSV or XLS) and the location of the
repository to store the final RDF result. The adapter exposes several additional API methods for
managing the transformations life cycle (registration, listing, unregistration).

Complete API specification is available in section 5.1.1.

2.2.4 RDF export

The RDF export adapter is based on the OpenRDF Sesame framework10 APIs with a thin layer on top
for user access control management. The API itself is exposed without any functional restrictions to
ensure maximal interoperability with other systems or components.

The export RDF functionality comes in two flavours:

 Exporting a complete dataset or graph from a dataset;

 Exporting a sub-graph using SPARQL constructs

In either case the result is RDF serialized in user provided format.

Complete API specification is available in section 5.1.2.

2.2.5 Raw data export

Any non-RDF data loaded into the system via the import adapters is also preserved in its original form
as an archive. This data is available for download at any time and it's identical to the version published
(any subsequent modifications on the data in the data warehouse are not reflected).

Complete API specification is available in section 5.1.2

2.3 Access, Query & Update

2.3.1 SPARQL Query & Update

SPARQL is a query language and protocol for RDF. SPARQL can be used to express queries across
diverse data sources, whether the data is stored natively as RDF or viewed as RDF via middleware.

7 https://any23.apache.org/index.html
8 http://www.w3.org/TR/rdb-direct-mapping/
9 http://www.w3.org/TR/r2rml/
10 http://rdf4j.org/

https://any23.apache.org/index.html
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/r2rml/
http://rdf4j.org/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 14 / 28

SPARQL contains capabilities for querying required and optional graph patterns along with their
conjunctions and disjunctions. SPARQL also supports aggregation, subqueries, negation, creating
values by expressions, extensible value testing, and constraining queries by source RDF graph. The
results of SPARQL queries can be result sets or RDF graphs.

SPARQL Update is an update language for RDF graphs. It uses a syntax derived from the SPARQL
Query Language for RDF. Update operations are performed on a collection of graphs in a Graph Store.
Operations are provided to update, create, and remove RDF graphs in a Graph Store.

2.3.2 OpenRDF Sesame APIs

There are two approaches for accessing the RDF data from the data warehouse: direct data access and
via SPARQL based communication.

The direct data access APIs works on the level of RDF triples (or quads if graphs are used). All requests
go to the same URL (/repositories/{id}/statements), but using different parameters and different HTTP
methods depending on the operation required:

 GET – retrieval of the data from the repository. Optionally the result can be filtered by certain
sub-components of the RDF statement: subject, predicate, object or graph. Any combination of
filters is acceptable and valid restrictions in the filters are concrete values rather than wildcards.
The absence of a filter means unrestricted value.

 POST – addition of RDF data to the repository. The new data is supplied in the request in valid
RDF format. Optionally a 'context' parameter can be specified to restrict the operation to a
specific graph.

 PUT – update of RDF data in the repository. This operation removes any old data contained in
the repository and loads the new one supplied in the request. Context parameter can be
specified to restrict the operation to a specific graph.

 DELETE – removal of statements from the repository. Restriction parameters as the ones from
the GET operation are valid here as well. A request without filter parameters removes all the
data from the repository.

The SPARQL based data query and update is supported by two separate API endpoints (URLs). The
SPARQL querying is done by sending the query expression and the desired format of the results.
Depending on the query type the nature of the result can be either RDF data (CONSTRUCT) or variable
bindings set (SELECT).

The SPARQL Update service is an extension of the direct data access API (POST) but instead of
providing RDF data, an additional 'update' parameter is supplied. This parameter contains the SPARQL
Update expression which describes the required updates (insertion or/and removal).

Complete API specification is available in Section 5.3.

2.4 Catalog Services

The Catalog services play an important role for the integrity of the various components of the DaaS
layer. It is an integration component between data, metadata, user interface, user management and
access control. The protocol for data exchange is based on the emerging W3C standard for datasets
descriptions. All catalog service APIs conform to the DCAT vocabulary wherever applicable.

2.4.1 DCAT

DCAT is an RDF vocabulary designed to facilitate interoperability between data catalogs published on
the Web. By using DCAT to describe datasets in data catalogs, publishers increase discoverability and
enable applications easily to consume metadata from multiple catalogs. It further enables decentralized
publishing of catalogs and facilitates federated dataset search across sites.

DCAT incorporates terms from pre-existing vocabularies, where stable terms with appropriate meanings
could be found, such as foaf:homepage and dct:title. Informal summary definitions of these terms are
included here for convenience, while complete definitions are available in the provided authoritative

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 15 / 28

references. Changes to definitions in those references, if any, will supersede the summaries given in
this specification.

Figure 2. DCAT model

DCAT defines three main classes:

 dcat:Catalog represents the catalog

 dcat:Dataset represents a dataset in a catalog.

dcat:Distribution represents an accessible form of a dataset as for example a downloadable
file, an RSS feed or a web service that provides the data.

Dataset in DCAT is defined as a "collection of data, published or curated by a single agent, and available
for access or download in one or more formats". A dataset does not have to be available as a
downloadable file. For example, a dataset that is available via an API can be defined as an instance of
dcat:Dataset and the API can be defined as an instance of dcat:Distribution. DCAT itself does not define
properties specific to APIs description. These are considered out of the scope of the vocabulary.

2.4.2 Catalog APIs

The APIs support the complete set of CRUD operations for the different types of entities in the system.
Following the approved RESTful design patterns we have the following action to http methods mapping:

 GET – retrieve an entity description

 POST – create a new description

 PUT – update an existing description

 DELETE – delete a description

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 16 / 28

The supported input/output data formats for the various API methods are in accordance with the DCAT
vocabulary - any standard RDF serialization or JSON-LD.

The following tables list the main functionalities of the catalog APIs. Complete description of the API is
provided in the Annex of this document.

Table 5. Datasets management

Method URL Description

GET /users/{user-id}/catalog List a catalog of datasets for the user (owned and shared)

GET /users/{user-id}/datasets Get details about certain dataset (meta data)

POST /users/{user-id}/datasets Create a new dataset (meta data)

PUT /users/{user-id}/datasets Update an existing dataset (meta data)

DELETE /users/{user-id}/datasets Delete a dataset

GET /users/{user-
id}/datasets/search

Search for datasets based on meta-data (titles, descriptions,
keywords)

Table 6. Distributions management

Method URL Description

GET /users/{user-
id}/distributions

Get description of a distribution

POST /users/{user-
id}/distributions

Create a new distribution (description)

PUT /users/{user-
id}/distributions

Update an existing distribution

DELETE /users/{user-
id}/distributions

Delete distribution

The following example demonstrates a simple data catalog retrieval invocation and the result in JSON-
LD.

Request via cURL11 from the command line:

$ curl -H "Accept:application/ld+json" http://dapaas.ontotext.com/catalog/users/Alex/catalog

And the corresponding response:

{
 "@context": { ... }
 "@type": "dcat:Catalog",
 "dct:publisher": "Alex",
 "@id": "http://dapaas.eu/users/Alex/datasets",
 "dcat:record": [
 {
 "@type": "dcat:CatalogRecord",
 "foaf:primaryTopic": "http://eu.dapaas/dataset/1",
 "dct:issued": "2014-09-16",
 "dct:modified": "2014-09-17",
 "dct:title": "My first DaPaaS dataset"
 },
 {

11 http://en.wikipedia.org/wiki/CURL

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 17 / 28

 "@type": "dcat:CatalogRecord",
 "foaf:primaryTopic": "http://eu.dapaas/dataset/2",
 "dct:issued": "2014-09-15",
 "dct:modified": "2014-09-17",
 "dct:title": "My second DaPaaS dataset"
 }
]
}

The complete catalog API documentation can be found in the Annex (Section 5.2).

2.5 Component Workflow

The following diagram (Figure 3) outlines the major components of the DaaS platform layer and their
dependencies to other modules. Some of the components are common for the data and the platform
layer like user management and access control and catalog services.

Figure 3. Prototype Components Overview

The import adapters receiving tabular data files as input store the original files in the Content store and
then perform the RDFization step which loads the result in the Metadata store. Additionally the Grafter
Import Adapter needs the content store to retrieve an existing transformation to apply it on the input data.

The RDB-2-RDF Import Adapter receives parameters to external RDBMS rather than actual data so it
needs only the metadata store to load the results produced.

The User Management Service is quite self-contained component requiring only persistence mechanism
to store user data. This information is potentially sensitive containing account passwords and e-mail so
we cannot reuse the Data Warehouse for that. So we chose to use Amazon SimpleDB12 service which
is a highly available and flexible non-relational data store.

12 http://aws.amazon.com/simpledb/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 18 / 28

The Access Control module matches datasets and applications and with users and allowed operations
so it needs access to both - the metadata store and the user management service.

The Catalog Services keep track of the content of the whole data warehouse so its major counterpart
on the storage layer is the metadata store. To ensure adequate content exploration the service needs
support by the Access Control module.

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 19 / 28

3 Deployment Details

3.1 Hardware, OS, etc

The first version of the DaaS platform layer is hosted on two machines and a set of external cloud
services. The metadata store which is part of data warehouse requires significant amount of RAM
memory and intensive CPU utilisation. Therefore it occupies an entire machine with 64GB RAM13. The
rest of the data warehouse (that is, the Content store) which contains data organized in files is hosted
on Amazon Simple Storage Service14 (S3).

The second machine required to run the DaaS layer is a moderate performance one hosting various
services which are either used rarely or does not require computational resources (management
services, import adapters, catalogs).

Concerning the operating system requirements, all the components are based on Java so they can run
on any server platform. The current deployment is based on Ubuntu 12.04.2 LTS.

3.2 Software (3rd party)

The following third party components are supporting the platform:

 Apache Tomcat 7.0 (applications container)

 OpenRDF Sesame framework (RDF management middleware)

 AWS SDK for Java (java libraries for working with the Amazon services)

 Apache CXF framework (web services development framework)

 Apache Any23 (transformation framework from various data formats to RDF)

 Antidot db2triples (open source RDF2RDF library implementing DirectMapping and R2RML)

3.3 DaPaaS components

The data layer of the platform is organized into several components, most of them packaged as web
applications and exposed as RESTful web services:

 Data access services

 Data import services

 Catalog services

 User management and access control

 Grafter execution engine (WP4)

13 These are rough estimates as by the time of writing this document there are still no real world datasets hosted by the platform.
14 http://aws.amazon.com/s3/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 20 / 28

4 Future Work

Functionalities not addressed in the first prototype (M12) of the platform:

 Linked Data Platform15 (LDP)

This feature was not originally planned, however compliance with emerging standards for
Linked Data oriented applications interoperability is of great importance for the DaPaaS
platform. The LDP specification describes a set of best practices and simple approach for
a read-write Linked Data architecture, based on HTTP access to web resources that
describe their state using the RDF data model.

 Automated and supervised interlinking between datasets

This feature depends on the availability of visual (Web UI) means for specification of
interlinking parameters and mappings. Both the visual environment and the interlinking
discovery engine will be addressed in the second version of the platform.

 Notifications

 Statistics and monitoring

 Docker16 based multi-tenancy for repositories

The application of Docker containers technology to repositories will improve the processes
isolation between the users as well as it will enable resources usage quota management.

 Database analytics

15 http://www.w3.org/TR/ldp/
16 https://www.docker.io/

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 21 / 28

5 Annexes

5.1 API Documentation

5.1.1 Data Import APIs

CSV-2-RDF Import

URL /dapaas-import-services/csv2rdf

HTTP Method POST

Description Performs CSV-to-RDF transformation and loads the result in certain repository

Inputs

(HTTP headers)

publisher - the publisher ID from the catalogs
repository-url - target repository to store the result
repository-graph - optional graph in the repository
sep - field separator (optional)
base-uri - base URI for the result RDF data

Data supply:
a) remote CSV file import:
 source-url - source to CSV
 source-user - user
 source-pass - password

b) csv data upload as multipart attachment
 file - the CSV content
 name - the original file name of the csv file

Response Operation completion status (HTTP response code)

RDB-2-RDF Import

URL /dapaas-import-services/rdbv2rdf

HTTP Method POST

Description Performs RDB-to-RDF transformation and loads the result in certain repository

Inputs

(HTTP headers)

db-url - source RDBMS
db-user - source database user
db-pass - source database password
db-name - database name
db-driver - RDBMS driver
repository-url - target repository to store the result
repository-graph - optional graph in the repository
base-uri - base URI for the result RDF data
mode - one of 'direct' and 'r2r'
r2rml mapping file (as body content)

Response Operation completion status (HTTP response code)

Grafter Import

URL /dapaas-import-services/grafter/apply

HTTP Method POST

Description Performs CSV-2-RDF data transformation with Grafter and loads the result in
certain repository

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 22 / 28

Inputs

(HTTP headers)

publisher - the publisher ID from the catalogs
repository-url - target repository to store the result
repository-graph - optional graph in the repository
transformation-id - the id of the specific Grafter transformation to be used

CSV data upload as multipart attachment
 file - the CSV content
 name - the original file name of the csv file

Response Operation completion status (HTTP response code)

Grafter transformations management:

URL /dapaas-import-services/grafter/register

HTTP Method POST

Description Registers a new transformation into the DaPaaS platform

Inputs

(HTTP headers)

transformation-id - the id for the new Grafter transformation
description - free text description of the transformation, what it does, what it
requires, etc.

jar binary as multipart attachment
 file - the jar content
 name - the original file name of the jar file (it is not necessary to be the same
as the ID)

Response Operation completion status (HTTP response code)

URL /dapaas-import-services/grafter/list

HTTP Method GET

Description Lists all available (registered) transformations in the platform

Inputs -

Response JSON array of objects representing registered transformations (name and
description).
Examlpe:
[

 {

 "id' : "myGrafter1",

 "descr":"This is my transformation text"

 },

...
]

URL /dapaas-import-services/grafter/unregister

HTTP Method DELETE

Description Unregisters a transformation from the platform

Inputs

(HTTP headers)

transformation-id - the id of the specific Grafter transformation to be
unregistered (removed)

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 23 / 28

Response Operation completion status (HTTP response code)

5.1.2 Data Export APIs

RDF Export

URL /repositories/<repository-id>/statements

HTTP Method GET

Description Exports the content (RDF statements) of a repository, optionally filtered by
subject, predicate, object and graph

Inputs repository-id - id contained in the distribution description

Optional URL parameters:

subj - filter by subject URI

pred - filter by predicate URI

obj - filter by object value (literal or URI)

context - filter by graph (export of statements from a certain graph only)

HTTP header:

Accept - serialization format for the result. Valid formats are:
application/rdf+xml, text/plain, text/turtle, text/rdf+n3, text/x-nquads,
application/rdf+json, application/trix, application/x-trig, application/x-binary-rdf

Response RDF data serialized in the desired format

Raw Data Export (non RDF data)

URL /users/{user-id}/files/{id}

HTTP Method GET

Description Retrieves a single file by ID.

Inputs id - the identifier of the file taken from the distributions catalog

user-id - the owner of the file

Response The original file imported into the platform

5.2 Data Catalog APIs

5.2.1 Catalog access API

URL /users/{user-id}/catalog

HTTP Method GET

Description List user's datasets as well as public or shared ones with the user

Inputs user-id - the owner id

HTTP headers:
Accept - serialization format for the result:

 application/ld+json

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 24 / 28

 application/rdf+xml or any RDF type

showShared - includes public and shared datasets in the result as well. Valid
values are 'y' and 'n'

Response List of dataset catalog records using the DCAT vocabulary in
RDF or JSON-LD

URL /users/{user-id}/datasets/search

HTTP Method GET

Description Search for datasets by keywords on meta data (titles, descriptions, etc.)

Inputs user-id - the owner id

HTTP headers:
Accept - serialization format for the result:

 application/ld+json

 application/rdf+xml or any RDF type

URL parameter:
q - the search query expression (plain text)

Response List of dataset catalog records using the DCAT vocabulary in
RDF or JSON-LD

5.2.2 Datasets descriptions access and management

URL /users/{user-id}/datasets

HTTP Method GET

Description Get a dataset description (meta data) by id

Inputs user-id - the owner id

HTTP headers:
id - URI of the dataset, taken from the catalog
Accept - result serialization format

Response Complete dataset description using the DCAT vocabulary in
RDF or JSON-LD

URL /users/{user-id}/datasets

HTTP Method POST

Description Create a new dataset description

Inputs user-id - the owner id

HTTP header:
Content-Type - format of the data supplied

dataset description as RDF or JSON-LD

Note: if the description contains no @id, the system will generate one

Response URI of the new dataset in the format:
{ "@id" : "http://dapaas.eu/dataset/4" }

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 25 / 28

URL /users/{user-id}/datasets

HTTP Method PUT

Description Update an existing dataset description

Inputs user-id - the owner id

HTTP header:
Content-Type - format of the data supplied

dataset description as RDF or JSON-LD

Response Operation completion status (HTTP response code)

URL /users/{user-id}/datasets

HTTP Method DELETE

Description Delete a dataset description with all of its distributions

Inputs user-id - the owner id

HTTP header:
id - URI of the dataset to be removed

Response Operation completion status (HTTP response code)

5.2.3 Distributions management

URL /users/{user-id}/distributions

HTTP Method GET

Description Get distribution description by id (contained in the corresponding dataset
description)

Inputs user-id - the owner id

URL parameter:
distrib - URI of the distribution, taken from the dataset description

HTTP header:
Accept - result serialization format

Response Complete distribution description using the DCAT vocabulary in RDF or JSON-
LD

URL /users/{user-id}/distributions

HTTP Method POST

Description Create a new distribution description

Inputs user-id - the owner id

HTTP headers:
dset - URI of the dataset containing the distribution
Content-Type - data input format

distribution description as RDF or JSON-LD

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 26 / 28

Note: if the description contains no @id, the system will generate one

Response URI of the new distribution in the format:
{ "@id" : "http://dapaas.eu/distrib/abc..." }

URL /users/{user-id}/distributions

HTTP Method PUT

Description Update an existing distribution description

Inputs user-id - the owner id

HTTP headers:
dset - URI of the dataset containing the distribution
Content-Type - data input format
distribution description as RDF or JSON-LD

Response Operation completion status (HTTP response code)

URL /users/{user-id}/distributions

HTTP Method DELETE

Description Delete a distribution description

Inputs user-id - the owner id

HTTP header:
distrib - URI of the distribution to be deleted

Response Operation completion status (HTTP response code)

5.3 Data Access APIs

5.3.1 RDF direct data access APIs

URL /repositories/<repository-id>/statements

HTTP Method GET

Description Retrieve RDF data (statements) from a repository

Inputs refer to 5.1.2 for details

Response RDF data

URL /repositories/<repository-id>/statements

HTTP Method POST

Description Add RDF data to a repository

Inputs repository-id - id contained in the distribution description

HTTP header:
Content-Type - the format of the data supplied

RDF data in the request

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 27 / 28

Response Operation completion status (HTTP response code)

URL /repositories/<repository-id>/statements

HTTP Method PUT

Description Replace the content of a repository

Inputs repository-id - id contained in the distribution description

HTTP header:
Content-Type - the format of the data supplied

RDF data in the request

Response Operation completion status (HTTP response code)

URL /repositories/<repository-id>/statements

HTTP Method DELETE

Description Delete RDF data (statements) from a repository

Inputs refer to 5.1.2 for details

Response Operation completion status (HTTP response code)

5.3.2 SPARQL Query & Update APIs

URL /repositories/<repository-id>

HTTP Method GET or POST

Description Perform SPARQL query over the repository content

Inputs repository-id - id contained in the distribution description

HTTP header:
Accept - the format for the expected result. Depending on the query type,
valid formats are:

 select: application/sparql-results+xml, application/sparql-results+json

 construct: any standard RDF format (refer to 5.1.2)

query - the SPARQL query expression provided either in the URL (GET) or in
the request body (POST). The format in the latter case is:

query=<url encoded SPARQL expression>

Response Query evaluation results - variable bindings or RDF

URL /repositories/<repository-id>/statements

HTTP Method POST

Description Apply SPARQL Update on the repository content

Inputs repository-id - id contained in the distribution description

HTTP header:
Content-Type set to "application/x-www-form-urlencoded"

D1.2: Open DaaS prototype, v.1

Dissemination level: PU

 Copyright DaPaaS Consortium 2013-2015 Page 28 / 28

Request body content:

update - the SPARQL 1.1 Update expression in the form:

update=<URL-encoded SPARQL 1.1 Update expression>

Response Operation completion status (HTTP response code)

