
Copyright  DaPaaS Consortium 2013-2015

Small or medium-scale focused research project (STREP)

ICT SME-DCA Call 2013
FP7-ICT-2013-SME-DCA

Data Publishing through the Cloud:
A Data- and Platform-as-a-Service Approach to Efficient

Open Data Publication and Consumption

DaPaaS

Deliverable D2.1:

Open PaaS requirements, design & architecture

specification

Date: 30.01.2014

Author(s):
Brian Elvesæter, Dumitru Roman, Martin Fagereng Johansen,
Arne J. Berre, Marin Dimitrov, and Alex Simov

Dissemination level: PU

WP: WP2

Version: 1.0

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 2 / 41

Document metadata

Quality assurors and contributors

Quality assuror(s) Bill Roberts, Rick Moynihan, Amanda Smith

Contributor(s) DaPaaS Consortium

Version history

Version Date Description

0.1 04.12.2013
Initial outline and Table of
Contents (TOC).

0.2 09.12.2013
Restructuring of deliverable with
comments.

0.3 16.12.2013
Draft section on requirements
specification.

0.4 10.01.2014
Updated the requirements
specification with description of
key roles.

0.5 16.01.2014
Updated the technology review
section and description of
requirements.

0.6 17.01.2014

Consistency check and update of
sections 1 (Introduction), 2
(Requirements Specification) and
3.1 (High-Level Architecture of the
DaPaaS Platform).

0.7 21.01.2014
Updated the architecture
description of the Platform Layer.

0.8 23.01.2014
Updated the review of relevant
technologies.

0.9 28.01.2014
Finalized technology review.
Deliverable ready for internal
technical review.

0.95 29.01.2014
Addressed comments by internal
technical review. Deliverable
ready for quality assurors.

1.0 30.01.2014
Addressed comments by quality
assurors. Final formatting and
layout.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 3 / 41

Executive Summary
The main goal of the DaPaaS project is to provide an integrated Data-as-a-Service (DaaS) and Platform-
as-a-Service (PaaS) environment, together with associated services, for open data, where 3rd parties
can publish and host both datasets and data-driven applications that are accessed by end user data
consumers in a cross-platform manner.

This document provides:

 An overview of the DaPaaS Platform and the relevant roles played in the DaPaaS context;

 The requirements for the DaPaaS Platform;

 An initial architecture design for the Platform Layer of the DaPaaS Platform;

 A state-of-the-art overview of relevant solutions and technologies for the Platform Layer and
some recommendations on reuse of existing solutions to be considered in the next phase –
implementation of the first prototype.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 4 / 41

Table of Contents
EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

LIST OF ACRONYMS .. 6

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

1 INTRODUCTION ... 9

1.1 DAPAAS OVERVIEW AND KEY ROLES ... 9
1.2 STRUCTURE OF THIS REPORT ... 10

2 DAPAAS PLATFORM REQUIREMENTS SPECIFICATION ... 11

2.1 INSTANCE OPERATOR .. 11
2.2 DATA PUBLISHER .. 12
2.3 APPLICATION DEVELOPER ... 13
2.4 END USER DATA CONSUMER .. 15

3 ARCHITECTURE OVERVIEW ... 17

3.1 HIGH-LEVEL ARCHITECTURE OF DAPAAS PLATFORM .. 17
3.2 ARCHITECTURE OF THE PLATFORM LAYER .. 17

3.2.1 User Management & Access Control .. 18
3.2.2 Data Cleaning & App Development ... 19
3.2.3 Notification ... 20
3.2.4 App Management & Deployment ... 20
3.2.5 Catalog .. 21
3.2.6 Administration ... 21

3.3 SUMMARY OF ADDRESSED REQUIREMENTS .. 22

4 REVIEW OF RELEVANT TECHNOLOGIES FOR THE PLATFORM LAYER 24

4.1 TECHNOLOGY SELECTION APPROACH ... 24
4.2 PAAS CAPABILITIES SOLUTIONS .. 26

4.2.1 Docker ... 26
4.2.2 Cocaine .. 27
4.2.3 Deis ... 28
4.2.4 Juju .. 29
4.2.5 Cozy Cloud.. 29
4.2.6 OpenCivic ... 30
4.2.7 OpenStack ... 30
4.2.8 Ansible .. 31
4.2.9 Puppet Open Source .. 32
4.2.10 Chef .. 33
4.2.11 Nagios Core .. 34

4.3 DATA INTEGRATION CAPABILITIES SOLUTIONS ... 35
4.3.1 Talend Open Studio for Data Integration .. 35
4.3.2 OpenRefine ... 36
4.3.3 Karma .. 37
4.3.4 Cascading .. 37
4.3.5 Data Pipes.. 38

5 SUMMARY AND OUTLOOK ... 39

6 APPENDIX A: COMMERCIAL / CLOSED SOURCE INTEGRATED DAAS & PAAS

SOLUTIONS ... 40

6.1 DATAMEER .. 40
6.2 SPLUNK ... 40
6.3 WINDOWS AZURE MARKETPLACE ... 40
6.4 GOODDATA ... 41

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 5 / 41

6.5 TABLEAU SOFTWARE .. 41
6.6 INFOCHIMPS ... 41

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 6 / 41

List of Acronyms

API Application Programming Interface

CSV Comma Separated Values (format)

DaaS Data-as-a-Service

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation (format)

PaaS Platform-as-a-Service

REST Representational state transfer

RDF Resource Description Framework

SLA Service Level Agreement

SOA Service Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Lan-
guage

SSH Secure Shell

UML Unified Modeling Language

XML eXtensible Markup Language

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 7 / 41

List of Figures
Figure 1: DaPaaS artefacts ... 9

Figure 2: Key roles in a typical DaPaaS context ... 10

Figure 3: Instance Operator (IO) requirements .. 11

Figure 4: Data Publisher (DP) requirements ... 12

Figure 5: Application Developer (AD) requirements .. 14

Figure 6: End User Data Consumer (EU) requirements ... 15

Figure 7: High-level architecture of the DaPaaS Platform .. 17

Figure 8: Architecture of the Platform Layer .. 18

Figure 9: Basic Docker functions ... 27

Figure 10: Cocaine architecture .. 28

Figure 11: Juju administration GUI .. 29

Figure 12: OpenStack conceptual architecture ... 31

Figure 13: How Puppet works ... 32

Figure 14: How Chef works ... 33

Figure 15: Operating principle of Nagios ... 34

Figure 16: Talend Open Studio for Data Integration .. 35

Figure 17: Edit cells in OpenRefine – Common transformations .. 36

Figure 18: Modelling data in Karma .. 37

Figure 19: Cascading architecture .. 38

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 8 / 41

List of Tables
Table 1: Description of requirements from Instance Operator (IO) .. 11
Table 2: Description of requirements from the Data Publisher (DP) ... 13
Table 3: Description of requirements from the Application Developer (AD) .. 14
Table 4: Description of requirements from the End User Data Consumer (EU) 15
Table 5: User Management & Access Control ... 19
Table 6: App Development ... 19
Table 7: Notification ... 20
Table 8: App Management & Deployment ... 21
Table 9: Catalog ... 21
Table 10: Administration .. 21
Table 11: Addressed requirements by components of the Platform Layer .. 22
Table 12: Overview of relevant open source technologies .. 25

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 9 / 41

1 Introduction
This report represents Deliverable D2.1 "Open PaaS requirements, design & architecture specification"
of the DaPaaS project. This deliverable is a result of Task T2.1 "Requirements, analysis & design of the
Open Platform-as-a-Service infrastructure".

The aim of this deliverable is two-fold:

1. To introduce the DaPaaS platform, the relevant roles played in the DaPaaS context, and their
requirements towards a Data- and Platform-as-a-Service infrastructure for open data;

2. To provide details on the Platform Layer of the DaPaaS platform, with a focus on the architecture
and evaluation of existing relevant technologies that could be reused for the implementation of
the Platform Layer.

1.1 DaPaaS Overview and Key Roles

The main goal of the DaPaaS project is to provide an integrated Data-as-a-Service (DaaS) and Platform-
as-a-Service (PaaS) environment for open data, where 3rd parties can publish and host both datasets
and data-driven applications that are accessed by end user data consumers in a cross-platform manner.
The DaPaaS project will deliver the software that enables platform operators to deploy such an
environment in the cloud. Figure 1 below illustrates the idea that the DaPaaS software (DaaS and PaaS
functionalities) can have several deployed instances.

Figure 1: DaPaaS artefacts

As the main results of the DaPaaS project two major artefacts are expected:

1. Software consisting of DaaS, PaaS, and associated services;

2. One deployed instance of the Software in an XaaS manner. In the rest of this deliverable we will
refer to this deployed instance as “DaPaaS Platform”.

The key roles involved in a typical DaPaaS context and their relationships to the main DaPaaS artefacts,
the software and the platform, are illustrated in Figure 2 below. The roles are:

 The DaPaaS Developer implements DaPaaS software components and services for the
integrated DaaS and PaaS environment. During the course of the project, this role is expected
to be primarily played by the DaPaaS consortium.

 A deployed instance of DaPaaS software, i.e. the DaPaaS Platform, is operated and maintained
by an Instance Operator. During the course of the project, this role is played by the DaPaaS
consortium.

 The Data Publisher publishes data on the DaPaaS Platform which stores the data and makes
it available for 3rd party application developers and end user data consumers.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 10 / 41

 The Application Developer develops data-driven applications that use the data made available
via the DaPaaS Platform. The applications are deployed and hosted in the DaPaaS Platform.

 End Users Data Consumers consume data resulting from the deployed applications.

Figure 2: Key roles in a typical DaPaaS context

This document outlines the requirements for the DaPaaS platform from a role-based point of view with
a focus on the services and functionality required by the Instance Operator, Data Publisher, Application
Developer and End Users Data Consumer.

1.2 Structure of this Report

The rest of this document is structured as follows:

 Section 2 describes the core requirements for the DaPaaS Platform from the perspective of the
key roles introduced above;

 Based on the requirements identified in Section 2, Section 3 outlines the high-level architecture
of the DaPaaS Platform, and details the Platform Layer in terms of core components and their
relationships;

 Section 4 provides a review of relevant open source technologies for the implementation of
Platform Layer;

 Section 5 summarizes this document and provides technical recommendations for the
implementation phase of the DaPaaS project; and

 Appendix A provides a brief summary of selected commercial/closed source solutions that
provide capabilities relevant to the DaPaaS Platform.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 11 / 41

2 DaPaaS Platform Requirements Specification
In the following subsections we use a UML use case-inspired notation and technique to describe the
requirements of the DaPaaS Platform, e.g. capabilities or services that should be offered for the roles
introduced above.

2.1 Instance Operator

The Instance Operator role is played by organizations that want to operate and maintain an instance of
the DaPaaS Platform, e.g. acting as data brokers or creating data markets in various domains (e.g.
environmental domain). Figure 3 below shows the requirements the Instance Operator poses on the
DaPaaS Platform.

Figure 3: Instance Operator (IO) requirements

Descriptions of these requirements are given in Table 1 below.

Table 1: Description of requirements from Instance Operator (IO)

ID Name Brief description

IO-01 Secure access to plat-
form

The Instance Operator shall have secure access (e.g.
HTTPS/SSH) to the platform.

IO-02 Platform performance
monitoring

The Instance Operator shall be able to monitor the performance
(e.g. storage and memory usage, bandwidth, CPU usage, etc.).

IO-03 Statistics monitoring
(users, data, apps, us-
age)

The Instance Operator shall be able to retrieve statistics about
users (e.g. number, profiles), data (e.g. number, size), apps and
usage (e.g. dataset access, data consumption, number of ser-
vice calls) as a basis for e.g. billing/invoicing for the usage of
the platform.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 12 / 41

IO-04 Usage accounts man-
agement

The Instance Operator shall be able to manage user accounts
(e.g. add, delete, assign roles).

IO-05 Policy/quota configura-
tion and enforcement

The Instance Operator shall be able to configure usage policies,
e.g. data/apps quotas per user. The platform shall ensure en-
forcement of these policies, e.g. support deployment of applica-
tions subject to quotas and additional restrictions.

IO-06 UI for Instance Opera-
tor

The Instance Operator shall be able to access the platform ser-
vices through appropriate user interface (graphical and/or con-
sole).

2.2 Data Publisher

The Data Publisher role is played by organizations that want to publish data via the DaPaaS Platform.
Figure 4 below depicts the Data Publisher poses on the DaPaaS Platform.

Figure 4: Data Publisher (DP) requirements

Descriptions of these requirements are given in Table 2 below.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 13 / 41

Table 2: Description of requirements from the Data Publisher (DP)

ID Name Brief description

DP-01 Dataset import The Data Publisher should have the ability to import open
data into the DaPaaS platform. The data is not restricted to
RDF / Linked Data and it may include other formats such as
CSV, JSON, etc.

DP-02 Data storage & querying The Data Publisher should have access to APIs and query
endpoints for accessing, querying and updating data stored
on the platform.

DP-03 Dataset search & explo-
ration

The Data Publisher should have the possibility to explore the
dataset catalog & select relevant datasets.

DP-04 Data interlinking The Data Publisher should have the possibility to semi-auto-
matically interlink data from different datasets. This applies
only to data which is already in RDF form.

DP-05 Data cleaning & transfor-
mation

The Data Publisher should have the possibility to apply sim-
ple data cleanup & transformation (incl. RDFization) over
legacy data.

DP-06 Dataset bookmarking &
notifications

The Data Publisher should have possibility to subscribe to
datasets and receive notifications on datasets changes.

DP-07 Dataset metadata man-
agement, statistics & ac-
cess policies

The Data Publisher should have possibility to specify
metadata, descriptions and access control policies for the
datasets.

DP-08 Data scalability The platform should include mechanisms to scale to large
data volumes.

DP-09 Data availability The platform should include mechanisms to provide high
availability of data and limited downtime.

DP-10 User registration & profile
management

The Data Publisher shall be able to register as a data pub-
lisher and gain access to the relevant DaaS services.

DP-11 Secure access to plat-
form

The Data Publisher shall have secure access (e.g.
HTTPS/SSH) to the platform.

DP-12 UI for Data Publisher The Data Publisher shall be able to access the DaaS ser-
vices through appropriate user interfaces (graphical and/or
console).

DP-13 Data publishing method-
ology support

The data publication process should be accompanied by a
tool-supported methodology outlining steps containing vari-
ous data operations

2.3 Application Developer

The Application Developer role is played by Open Data application developers that for various reasons
(e.g. transparency, new business models, new services) want to develop new applications and services
around data and want to do so as fast as possible and as easy as possible. Figure 5 below depicts the
requirements the Application Developer poses on the DaPaaS Platform.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 14 / 41

Figure 5: Application Developer (AD) requirements

Descriptions of these requirements are given in Table 3 below.

Table 3: Description of requirements from the Application Developer (AD)

ID Name Brief description

AD-01 Access to Data Pub-
lisher services (DP-01
– DP-13)

The Application Developer shall have access to APIs and librar-
ies to access, import, transform, store, query, etc., datasets to
be used in the development of applications. Basically the Appli-
cation Developer has similar requirements as outlined in DP-01
– DP-13. This includes also requirements for secure access to
the platform, profile management.

AD-02 Data export The Application Developer shall have the possibility to export
data in various formats.

AD-03 Develop applications
in state-of-art pro-
gramming languages

The Application Developer shall have the possibility to develop
applications in the common state-of-art programming lan-
guages, e.g. Java, Scala, Go, Ruby.

AD-04 Configure application
deployment

The Application Developer shall have the possibility to configure
use of common cloud resources, e.g. database/storage, possi-
ble also graphical widgets.

AD-05 Deploy and monitor
application

The Application Developer shall have access to a controlled ap-
plication hosting environment where data-intensive applications
can be easily deployed, as well as monitoring facilities for the
deployed applications.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 15 / 41

AD-06 Application metadata
management, statis-
tics & access policies

The Application Developer shall have the possibility to update
metadata about applications (e.g. description) and retrieve sta-
tistics about the usage of the application.

AD-07 UI for Application De-
veloper

The Application Developer shall have the possibility to access
the relevant DaaS and PaaS services through appropriate user
interfaces (graphical and/or console).

AD-08 Application develop-
ment methodology
support

Application Developers should have access to a tool-supported
methodology outlining steps for developing and deploying data-
intensive applications.

2.4 End User Data Consumer

The End User Data Consumer role is played by organizations or individuals that want to consume data
and applications deployed on the platform. Figure 6 below shows the requirements the End User Data
Consumer poses on the DaPaaS Platform.

Figure 6: End User Data Consumer (EU) requirements

Descriptions of these requirements are given in Table 4 below.

Table 4: Description of requirements from the End User Data Consumer (EU)

ID Name Brief description

EU-01 User registration & profile
management

End Users shall be able to register as application con-
sumers and manage their profiles.

EU-02 Search & explore datasets
and applications

End Users shall be able to search and explore datasets
and applications available in the platform.

EU-03 Datasets and applications
bookmarking and notifica-
tions

End Users shall be able to bookmark and receive notifi-
cations (e.g. updates) of datasets and applications to
which they subscribe.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 16 / 41

EU-04 Mobile and desktop GUI
access

End Users shall be able to access applications on both
mobile and desktop devices, which requires UX compo-
nents to support both mobile and desktop users in an ap-
propriate manner. The End User Data Consumers shall
be able to access the relevant platform services, e.g.,
search for datasets, applications, run applications, visual-
ize datasets, etc., through appropriate graphical user in-
terfaces (GUIs), e.g. pie charts, time series and maps.

EU-05 Data export and download End Users shall have the possibility to export data in vari-
ous formats and download data from the platform.

EU-06 High availability of data
and applications

High availability of data and apps

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 17 / 41

3 Architecture Overview
This section outlines the high-level architecture of the DaPaaS Platform (Section 3.1), and details the
Platform Layer in terms of core components and their interactions (Section 3.2).

3.1 High-Level Architecture of DaPaaS Platform

The requirements outlined in the previous section imply a layered architecture consisting of a Data-as-
a-Service layer (Data Layer) for scalable data hosting, a Platform-as-a-Service layer (Platform Layer)
for application development and hosting, and a User Experience Layer (UX Layer) for user-friendly
access to data and applications. These three core layers cross-cut vertical layers that are related to
methodology support for data publishing and application development, and platform usage monitoring,
security, and access control to data and applications. Figure 7 below illustrates a simplified, high-level
architecture of the DaPaaS Platform.

Figure 7: High-level architecture of the DaPaaS Platform

The rest of this deliverable focuses on the Platform Layer of the architecture. An architecture of the
Platform Layer is described in the next (Section 3.2) and evaluation of exiting relevant technologies that
could be reused for the implementation of the Platform Layer are discussed in Section 4.

The Data Layer and the UX Layer fall within the scope of Deliverable D1.1 and Deliverable D3.1,
respectively, and further details about those layers can be found in those deliverables.

3.2 Architecture of the Platform Layer

Figure 8 depicts the main software components, their relationships and associated APIs of the Platform
Layer. The software components of the Platform Layer extend the capabilities offered by the Data Layer
(described in Deliverable D1.1) in five main service categories plus an administration service:

 User Management & Access Control which manages user profiles and secure access control
to apps and datasets.

 Data Cleaning & App Development which provides functionalities for applications
development, and support for data cleaning & transformation and data workflows.

 Notification which provides functionality for subscribing to apps and datasets events and
notifications.

 App Management & Deployment which gives developers control over the deployed
applications and configuration settings for the application-hosting environment.

 Catalog for searching and exploring apps and datasets.

 Administration which allows the management and monitoring of the DaPaaS Platform,
focusing on aspects related to the users, apps, datasets and services of the platform.

Data Layer

UX Layer

UX Services

Open Data

Warehouse

Platform Layer

U
s
a
g

e
 M

o
n

it
o

ri
n

g

Application Hosting

Environment

S
e
c
u

ri
ty

 &
 A

c
c
e
s
s
 C

o
n

tr
o

l

T
o

o
l-

s
u

p
p

o
rt

e
d

 M
e

th
o

d
o

lo
g

y
 f

o
r

D
a

ta
 P

u
b

li
s

h
in

g
/C

o
n

s
u

m
p

ti
o

n

DaaS Services

PaaS Services

Datasets
DaaS Services

DaaS Services

Data-Driven

ApplicationsPaaS Services
PaaS Services

UX Services
UX Services

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 18 / 41

The functionality of these services can be used by the UX Layer through well-defined APIs. This allows
for the creation of e.g. management consoles in the UX Layer. The public APIs of the DaPaaS Platform
can also be used by 3rd party applications and services.

The design of the Platform Layer involves a set of software components: User Manager, Access Control
Manager, Data Cleaning and Design-Time App Development Services, Run-Time App Hosting
Environment, Notification Service and Apps Catalog. Each component is responsible for a functional
area of the Platform Layer and communicates with each other through internal service interfaces. The
components can access and use the functionality offered through the Data Layer API.

Figure 8: Architecture of the Platform Layer

3.2.1 User Management & Access Control

The User Management & Access Control service category will be implemented by the User Manager
and Access Control Manager components. The User Manager component is responsible for managing
the registered users of the DaPaaS Platform and their user profiles. Users can register as Data
Publishers, Application Developers and End User Data Consumers. The user profile may contain
information about data quotas, apps and datasets access which are enforced by the Access Control
Manager.

The User Management & Access Control services will be offered through a REST API. The API will
provide create, read, update and delete (CRUD) actions for managing accounts, user profiles and
access control for apps and datasets.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 19 / 41

Table 5: User Management & Access Control

Component Addressed
Requirement

Description

User Manager DP-06 The user profile stores information about bookmarked datasets.
The User Manager component uses the Notification Service to
provide notification on dataset changes.

DP-10 User registration is implemented by the User Manager. It allows
users of the DaPaaS Platform to sign up as Data Publisher,
Application Developer and/or End User Data Consumer. User
account details, preferences and other relevant information are
stored in a user profile. The User Manager component provides
basic user functionality for all types of users.

AD-01 Covers the functionality such as DP-06 and DP-10, but for the
Application Developer.

EU-01 Same functionality as DP-10, but for the End User Data
Consumer.

EU-03 The user profiles for an End User Data Consumer provides
additional support for bookmarked apps and notifications.

Access
Control
Manager

DP-07 The Access Control Manager allows access policies for the
datasets to be specified.

AD-06 The Access Control Manager allows access policies for the apps
to be specified.

3.2.2 Data Cleaning & App Development

The Data Cleaning & App Development service category is a collection of Data Cleaning & Design-
Time App Development Services, of which App Configuration, Data Workflows and Data Cleaning
& Transformation are the main sub-components. The App Configuration is responsible for providing
standardized mechanisms to configure cloud resources (e.g. data storage), DaaS services and UX
components to be used by the deployed instance of the app at run-time. The Data Cleaning &
Transformation component provides additional data management functionalities that complement Data
Layer functionality with capabilities for data cleaning (duplicate removal), data transformation, as well
as data mapping and alignment. The Data Workflows component provides the capability to define simple
data-driven pipelines that use functionality of the Data Layer (e.g., import/export and publish data) and
the added functionality offered by the Data Cleaning & Transformation component in order to support
simple sequential data transformations.

The App Development services will be offered through a REST API. The API will provide create, read,
update and delete (CRUD) actions for managing app configurations. In addition the API will provide
actions for accessing and using the DaaS services, including the ability to create simple data workflows.

Table 6: App Development

Component Addressed
Requirement

Description

App
Configuration

AD-03 Support for state-of-the-art programming languages will be an
evaluation criterion in the review and selection of the PaaS
Infrastructure (Section 4).

AD-04 The App Configuration provides a standard way of configuring
the required cloud resources, DaaS services and UX
components to be used for app development.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 20 / 41

Data Workflows AD-01 The Application Developer shall have access to a range of
DaaS capabilities that can be used for app development. The
set of DaaS capabilities will be provided through the Data
Workflows component.

AD-02 The Application Developer shall have the possibility to export
data in various formats. Such DaaS functionalities will be
provided through the Data workflows component.

AD-08 and

DP-13

Partial methodology support for the development of data-
intensive applications can be given by pre-defined data
workflows that are useful for application developers and data
publishers, e.g., assisting data owners with the process of
RDFizing their data. The implementation support for
methodology will be developed in the context of WP4
(DaPaaS Methodology) further elaborated in Deliverable
D4.1.

Data Cleaning &
Transformation

DP-05 The Data Cleaning & Transformation will implement
capabilities for data cleaning (e.g. duplicate removal).

3.2.3 Notification

The Notification service category is implemented by a Notification Service. It provides functionality
for subscribing to events and notifications about apps and datasets.

The Notification Service will be offered through a REST API. The API will provide actions for creating,
deleting and listing topics, actions for subscribing and unsubscribing to such topics, and actions for
publishing messages to subscribers of specific topics.

Table 7: Notification

Component Addressed
Requirement

Description

Notification
Service

DP-06 The Notification Service must implement support for
publishing and subscribing different types of events and
notifications for datasets.

EU-03 The Notification Service must also implement support for
publishing and subscribing events and notifications for users
and apps.

3.2.4 App Management & Deployment

The App Management & Development service category will be implemented by components such as
Application Container and App Monitoring. The Application Container provides a cloud-provisioned
environment where developers can deploy and run applications. The App Monitoring component will
provide functionality for monitoring the usage of services and consumption of data on the DaPaaS
Platform as well as enforcing resource quotas which guarantee the “fair use” of the Platform by 3rd
parties.

The App Management & Development services will be offered through a REST API. The API will provide
actions for setting up the application container and deploy and undeploy apps. The API will also provide
capabilities for logging relevant data about running apps for monitoring and statistics purposes.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 21 / 41

Table 8: App Management & Deployment

Component Addressed
Requirement

Description

Application
Container

AD-05 The Application Container provides the ability to deploy and
run an application.

EU-06 The Application Container should provide mechanisms
such as load balancing and app scalability to ensure high
availability.

App Monitoring DP-07 The App Monitoring provides functionality to track usage of
datasets for which statistics can be collected.

AD-06 The App Monitoring provides functionality to track usage of
the apps for which useful statistics can be collected.

3.2.5 Catalog

The Catalog service category will provide capabilities for application metadata management, similar to
the dataset catalog in the DaaS layer. The Catalog service will be offered through a REST API. The API
will provide search actions for apps and create read, update and delete (CRUD) actions for managing
metadata of apps.

Table 9: Catalog

Component Addressed
Requirement

Description

Apps
Catalog

AD-06 The Apps Catalog will contain relevant metadata about the
apps, e.g. description and number of users.

EU-02 The Apps Catalog will provide functionality for searching and
exploring apps based on metadata.

3.2.6 Administration

The Administration service category will provide capabilities primarily targeting the administrator of the
platform, i.e., the Instance Operator. Administration actions provide extended functionality that makes it
easier for administrators to manage users, access control policies, apps and datasets. This extended
functionality will be implemented by the corresponding component of the Platform Layer, but the actions
will not be exposed in the public APIs available to the other users of the platform (i.e., data publishers,
apps developers, or end user data consumers). Instead, separate APIs are defined for the administrator.

Table 10: Administration

Component Addressed
Requirement

Description

User Management &
Access Control

IO-01 and DP-11 The Instance Operator and Data Publisher (and
implicitly Application Developer) shall have secure
access (e.g. HTTPS/SSH) to the platform.

IO-02 An Administration API will provide monitoring and
logging capabilities of the complete run-time app hosting
environment.

IO-03 An Administration API will provide extended actions for
retrieving statistics about users and their usage of apps
and datasets.

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 22 / 41

IO-04 An Administration API will provide actions for managing
user accounts.

IO-05 An Administration API will provide actions for configuring
usage policies, e.g., predefining different policies that
users can select during sign-up.

3.3 Summary of Addressed Requirements

Table 11 below depicts which DaPaaS Platform requirements (introduced in Section 2) are addressed
by which components at the Platform Layer (a '+' is used to indicate this relation for each requirement).

The requirements that are not addressed by the Platform Layer are marked in grey. The requirements
DP-01, DP-02, DP-03, DP-04, DP-08, DP-09 and EU-05 are addressed at the Data Layer and further
elaborated in Deliverable D1.1. The requirements DP12 and EU-04 are addressed at the UX Layer and
further elaborated in Deliverable D3.1.

The requirements AD-08 and DP-13 focus on methodology support. In the Platform Layer architecture
partial methodology support can be provided by the Data Workflows component (see Section 3.2.2). A
separate methodology component (e.g. providing online guidelines and wizards) may be introduced in
the architecture. This methodological aspect is out of the scope of this document and will be addressed
as part of Deliverable D4.1 in WP4 (DaPaaS Methodology).

Table 11: Addressed requirements by components of the Platform Layer

D
a

P
a

a
S

 P
la

tf
o

rm

R
e

q
u

ir
e

m
e

n
t

U
s

e
r

M
a

n
a

g
e

m
e

n
t

&

A
c

c
e

s
s

 C
o

n
tr

o
l

D
a

ta
 C

le
a
n

in
g

 &

A
p

p

D
e

v
e

lo
p

m
e

n
t

N
o

ti
fi

c
a

ti
o

n

A
p

p

M
a

n
a

g
e

m
e

n
t

&

D
e

p
lo

y
m

e
n

t

C
a

ta
lo

g

A
d

m
in

is
tr

a
ti

o
n

IO-01 + +

IO-02 + +

IO-03 + + +

IO-04 + +

IO-05 + +

IO-06 +

DP-01

DP-02

DP-03

DP-04

DP-05 +

DP-06 + +

DP-07 + +

DP-08

DP-09

DP-10 +

DP-11 +

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 23 / 41

DP-12

DP-13

AD-01 + +

AD-02 +

AD-03 +

AD-04 +

AD-05 +

AD-06 + + +

AD-07

AD-08

EU-01 +

EU-02 +

EU-03 + +

EU-04

EU-05

EU-06 +

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 24 / 41

4 Review of Relevant Technologies for the Platform Layer
This section presents the state-of-the-art analysis of relevant technologies for the Platform Layer and
includes an explanation of the technology selection (Section 4.1) and review of relevant technologies
for the design and implementation of the Platform Layer of the DaPaaS Platform (Section 4.2 and 4.3).

4.1 Technology Selection Approach

There are many PaaS vendors in the market nowadays. The website http://clouds360.com lists the top
20 PaaS vendors. The three dominant players in the PaaS market are Amazon with its Amazon Web
Services (AWS)1 solution, Google with its Google App Engine2 and Microsoft with its Windows Azure3.
Another main commercial vendor in the market is Salesforce.com with its Salesforce1 Platform4. Open-
source alternatives also exist, e.g. AppScale5 and OpenStack6.

The implementation strategy for the DaPaaS Platform is to utilize open source technologies and be
based on open standards as much as possible. This does not necessarily exclude commercial
components to be used in the platform (such as the OWLIM RDF database from Ontotext for the DaaS
layer) as long as they are compliant with relevant open standards (such as those produced by the W3C
for RDF and SPARQL, in the case of OWLIM) and can easily be replaced by alternative open source
products.

Due to many available open source solutions relevant for the Platform Layer, for the development of the
Platform Layer the aim is to be based entirely on open source technologies. At the very least the core
component of the Platform Layer, i.e., the Data Cleaning & App Development and the App Management
& Deployment, will be based on existing open source tools and frameworks. For this reason the review
of relevant technologies for the Platform Layer is focused on open source solutions for PaaS and data
integration capabilities:

 PaaS capabilities: A Platform-as-a-Service (PaaS) provides the capability for 3rd party
application developers to deploy on a cloud infrastructure 3rd party applications developed using
programming languages, libraries, services and protocols provided by the PaaS provider. The
PaaS provides 3rd party developers control over the deployed applications and configuration
settings for the application-hosting environment. Typical PaaS service offerings include
capabilities for application design, development, deployment, data access, security, scalability,
storage, application instrumentation, service monitoring, workflow management, discovery, etc.

 Data integration capabilities: The DaaS services of the Data Layer primarily mainly provide
automated functions for data management (e.g. import, linking, etc.). The data integration
capabilities of the Platform Layer provide additional semi-automated functions that help the Data
Publisher in publishing data and the Application Developer in developing data-driven
applications. Examples of such capabilities are data cleaning, transformation, workflows and
methodology that often requires a graphical user interface to interact with.

Table 12 below lists the selected solutions that have been analysed with respect to PaaS and data
integration capabilities for the Platform Layer design and implementation. Further details on the
evaluations are provided in the following sub-sections.

1 http://aws.amazon.com/
2 https://developers.google.com/appengine/
3 www.windowsazure.com/
4 http://www.salesforce.com/eu/platform/overview/
5 http://www.appscale.com/
6 http://www.openstack.org/

http://clouds360.com/
http://aws.amazon.com/
https://developers.google.com/appengine/
http://www.windowsazure.com/
http://www.salesforce.com/eu/platform/overview/
http://www.appscale.com/
http://www.openstack.org/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 25 / 41

Table 12: Overview of relevant open source technologies

Capabilities

Solution Short description Open source
license

PaaS
Solutions

Docker Docker is an open source solution to easily
create lightweight, portable, self-sufficient
containers from any application.

Apache License
Version 2.0

Cocaine Cocaine is an open-source PaaS system for
creating custom cloud hosting apps that are
similar to Google App Engine or Heroku.

GNU Lesser
General Public
License (GPL)
Version 3

Deis Deis is an open source PaaS that makes it
easy to deploy and scale Docker containers
and Chef nodes used to host applications,
databases, middleware and other services.

Apache License
Version 2.0

Juju Juju is a tool for configuring, managing,
maintaining and deploying applications
based on Charms application configurations.

GNU Affero General
Public License
(aGPL) Version 3

Cozy Cloud Cozy Cloud allows users to build a Personal
Cloud Platform-as-a-Service (PaaS) where
users can deploy personal web applications
(official apps such as Calendar, Contacts
and Photos are available from a
marketplace) or write apps from scratch.

GNU Lesser
General Public
License (LGPL)
Version 3

OpenCivic OpenCivic is an open source resource
cataloguing, hackathon and app store
management platform designed to help
organizations better collaborate in
developing, sharing and maintaining
information and apps that solve civic
problems.

Available as open
source on GitHub,
but no licensing
information is given.

OpenStack OpenStack is a cloud operating system that
controls large pools of compute, storage,
and networking resources throughout a
datacenter, all managed through a
dashboard that gives administrators control
while empowering their users to provision
resources through a Web interface.

Apache License
Version 2.0

Ansible Ansible is an automation engine that aims to
make systems and apps simple to deploy.

GNU General Public
License (GPL)
Version 3

Puppet Open
Source

Puppet Open Source is a flexible,
customizable framework designed to help
system administrators automate the many
repetitive tasks they regularly perform.

Apache License
Version 2.0

Chef Chef is a systems and cloud infrastructure
automation framework that aims to make it
easy to deploy servers and applications to
any physical, virtual, or cloud location.

Apache License
Version 2.0

Nagios Core Nagios Core is an open source IT
monitoring system that monitors critical IT
infrastructure components, including system
metrics, network protocols, applications,

GNU General Public
License (GPL)
Version 2

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 26 / 41

services, servers, and network
infrastructure.

Data
Integration
Solutions

Talend Open
Studio for
Data
Integration

Talend Open Studio for Data Integration
provides a set of data integration tools to
access, transform and integrate data from
any business system in real time or batch to
meet both operational and analytical data
integration needs.

GNU Lesser
General Public
License (LGPL)
Version 3

OpenRefine OpenRefine is a tool for working with messy
data, cleaning it, transforming it from one
format into another, extending it with Web
Services and linking to databases.

Open source
Google license with
dependencies to a
number external
open source
licenses.

Karma Karma is an information integration tool that
enables users to quickly and easily integrate
data from a variety of data sources including
databases, spreadsheets, delimited text
files, XML, JSON, KML and Web APIs.

Apache License
Version 2.0

Cascading Cascading is an application framework for
Java developers to develop robust data
analytics and data management applications
on Apache Hadoop.

Apache License
Version 2.0

Data Pipes Data Pipes is a service to provide
streaming, "pipe-like" data transformations
on the web – things like deleting rows or
columns, find and replace, head, grep etc.

MIT License

4.2 PaaS Capabilities Solutions

4.2.1 Docker

Docker7 is an open source project to easily create lightweight, portable, self-sufficient containers from
any application. It has a very active user community8 and has more than 200 contributors.

The main feature of Docker is to provide portable deployment across machines by packaging software
in a common kind of container. Docker defines a format for bundling an application and all its
dependencies into a single object which can be transferred to any Docker-enabled machine, and
executed there with the guarantee that the execution environment exposed to the application will be the
same. This allows the packaged applications to run in different environments without being reconfigured
again.

Figure 9 illustrates the basic functionality of Docker9. A container comprises both an application and all
of its dependencies. Containers can either be created manually or automatically in a source code
repository (requires a DockerFile). Subsequent modifications to a baseline Docker image can be
committed to a new container using the Commit function and then Pushed to a Central Registry.
Containers can be found in a Docker Registry using Search. Containers can be pulled from the registry
using Pull and can be run, started, stopped, etc. using Run commands. The target of a run command
can be self-owned servers, public instances, or a combination.

7 https://www.docker.io/
8 http://blog.docker.io/2013/11/docker-project-community-stats/
9 https://www.docker.io/the_whole_story/#What-are-the-Main-Features-of-Docker

https://www.docker.io/
http://blog.docker.io/2013/11/docker-project-community-stats/
https://www.docker.io/the_whole_story/#What-are-the-Main-Features-of-Docker

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 27 / 41

Figure 9: Basic Docker functions10

In addition the Docker tool offers features for application deployment, automatic build, versioning and
component re-use. Docker also provides an API11 for automating and customizing the creation and
deployment of containers.

Docker is released under the open source Apache License Version 2.0 license12.

4.2.2 Cocaine

Cocaine 13 (Configurable Omnipotent Custom Applications Integrated Network Engine) is an open-
source PaaS system for creating custom cloud hosting apps that are similar to Google App Engine14 or
Heroku 15 , which are not open source and locked in to the Google and Amazon cloud platforms
respectively. Cocaine is developed by Yandex, the leading search engine in Russia, which organizes
the community and conferences.

The Cocaine architecture (see Figure 10) simplifies the creation of cloud hosting apps by hiding the
infrastructure details and the applications environment settings from the developer. The developer only
needs to send the code to the Cocaine server and write a special manifest for executing the code. It is
not necessary to set up anything else, such as databases, as these are handled by services in the
infrastructure. Any library or service can be implemented as a service in Cocaine using a special API16.
From the programmer's point of view, these services look like native modules for the programming
language the code is written in.

One of the notable features of Cocaine is that apps are driven by events. There are two sources of
events for every app, and there exists lots of predefined plugins providing those sources. Firstly there
exists services such as publish-subscribe notification and secondly there are event drivers allowing
developers to generate app events.

Cocaine uses Docker as the underlying application container. Cocaine provides a plugin which connects
to Docker and controls it using a rich REST API.

10 Figure taken from https://www.docker.io/the_whole_story/#What-are-the-Main-Features-of-Docker
11 http://docs.docker.io/en/latest/api/
12 https://github.com/dotcloud/docker/blob/master/LICENSE
13 http://api.yandex.com/cocaine/
14 https://developers.google.com/appengine/
15 https://www.heroku.com/
16 https://github.com/cocaine/cocaine-docs/blob/v0.11/doc/contents.md

https://www.docker.io/the_whole_story/#What-are-the-Main-Features-of-Docker
http://docs.docker.io/en/latest/api/
https://github.com/dotcloud/docker/blob/master/LICENSE
http://api.yandex.com/cocaine/
https://developers.google.com/appengine/
https://www.heroku.com/
https://github.com/cocaine/cocaine-docs/blob/v0.11/doc/contents.md

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 28 / 41

Cocaine is released under the open source GNU Lesser General Public License (LGPL) Version 3
license17.

Figure 10: Cocaine architecture18

4.2.3 Deis

Deis19 is an open source PaaS that makes it easy to deploy and scale Docker containers and Chef
nodes used to host applications, databases, middleware and other services. Deis leverages Chef,
Docker and Heroku Buildpacks20 to combine a Heroku-inspired application platform for public and
private clouds. Deis is a fairly new open source project, but has high ambitions with a regular release
schedule with a production ready 1.0 release expected soon21.

The main component of Deis is the controller component22 . Controllers are tied to a configuration
management backend where data about users, applications and formations is stored. A formation is a
set of infrastructure used to host applications.

The controller is in charge of:

 Processing client API calls

 Managing nodes that provide services to a formation

 Managing containers that perform work for applications

 Managing proxies that route traffic to containers

 Managing users, providers, flavors, keys and other base configuration

17 https://github.com/cocaine/cocaine-core/blob/master/LICENSE
18 Figure taken from http://api.yandex.com/cocaine/
19 http://deis.io/overview/
20 https://devcenter.heroku.com/articles/buildpacks
21 http://deis.io/deis-devops-and-the-future-of-open-paas/
22 http://docs.deis.io/en/latest/components/controller/

https://github.com/cocaine/cocaine-core/blob/master/LICENSE
http://api.yandex.com/cocaine/
http://deis.io/overview/
https://devcenter.heroku.com/articles/buildpacks
http://deis.io/deis-devops-and-the-future-of-open-paas/
http://docs.deis.io/en/latest/components/controller/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 29 / 41

Deis provides a REST API23 for integration with other tools and systems. Deis is released as open source
under the Apache License 2.0 license24.

4.2.4 Juju

Juju25 is a tool for configuring, managing, maintaining and deploying Charms application architectures.
Charms26 encapsulate application configurations, define how services are deployed, how they connect
to other services and are scaled. A Charm is essentially a structure bundled of files that contain
metadata, configuration data and hooks (e.g., executable files).

Juju is a project launched by Canonical, which are the developers of the Ubuntu Linux-based operating
system, and has a strong community behind it. Juju allows users to deploy, manage and scale software
and interconnected services across one or more Ubuntu servers and cloud platforms.

Juju provides a GUI (see Figure 11) and command-line interface to define, configure, deploy, manage,
monitor and scale services to any public or private cloud.

Juju is released under the open source GNU Affero General Public License (aGPL) Version 3 license27.

Figure 11: Juju administration GUI28

4.2.5 Cozy Cloud

Cozy Cloud29 allows users to build a Personal Cloud Platform-as-a-Service (PaaS) where users can
deploy personal web applications (official apps such as Calendar, Contacts and Photos are available
from a marketplace) or write apps from scratch. Cozy Cloud provides a centralized storage with data
types and access control that can be shared/used by the apps.

Cozy Cloud is developed by a young startup company located in France with a small team of eight
persons. Cozy Cloud was developed to be a private personal cloud solution that allows users to host
their own personal applications in a single place that they control. This way, users can manage their
data from anywhere while protecting their privacy. The design of the platform is very focused on the

23 http://docs.deis.io/en/latest/server/
24 https://github.com/opdemand/deis/blob/master/LICENSE
25 https://juju.ubuntu.com/
26 https://juju.ubuntu.com/charms/
27 https://launchpad.net/juju-core
28 Figure taken from https://juju.ubuntu.com/features/
29 https://www.cozycloud.cc/

http://docs.deis.io/en/latest/server/
https://github.com/opdemand/deis/blob/master/LICENSE
https://juju.ubuntu.com/
https://juju.ubuntu.com/charms/
https://launchpad.net/juju-core
https://juju.ubuntu.com/features/
https://www.cozycloud.cc/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 30 / 41

personal single-user perspective. Thus capabilities for handling large data and multi-users have not
been addressed in the architecture. Because of the focus on the single-user perspective, the Cozy Cloud
solution does not seem suitable for the implementation of the Platform Layer in DaPaaS.

Cozy Cloud is released as open source under the GNU Lesser Generic Public License (LGPL) Version
3 license30.

4.2.6 OpenCivic

OpenCivic31 is an open source resource cataloguing, hackathon and app store management platform
designed to help organizations better collaborate in developing, sharing and maintaining information
and apps that solve civic problems. OpenCivic is based on Drupal. The main goal of the Drupal distro is
to help build websites that enable people to share information about software applications.

OpenCivic provides features for app store and hackathons:

 Catalog applications and their metadata, including pictures and their descriptions

 Catalog organizations that use and contribute to apps

 Store and publish open data for developers to use in application development

 Catalog deployments of specific apps by organizations and locations

 Publish and manage hackathons events

 Collect, define, rate and refine problems for the events

 Define and manage development teams for the events

The OpenCivic distribution for Drupal is available as open source on GitHub 32 , but no licensing
information is given.

4.2.7 OpenStack

OpenStack33 is a cloud operating system that controls large pools of compute, storage, and networking
resources throughout a datacenter, all managed through a dashboard that gives administrators control
while empowering their users to provision resources through a web interface. OpenStack has a very
large community and top industry involvement behind it, organized as the OpenStack Foundation34.

Figure 12 shows a conceptual architecture of the OpenStack from the operator side of the cloud, i.e. the
Instance Operator. The OpenStack provides APIs for:

 Dashboard (Web frontend)

 Store and retrieval of virtual disks/images and associated metadata, as well as the virtual disk
files themselves

 Virtual network and storage volumes for computing

 Identity and service authentication

30 https://github.com/mycozycloud/cozy-setup/blob/master/LICENSE
31 http://nucivic.com/opencivic/
32 https://github.com/civic-commons/opencivic
33 http://openstack.org
34 http://www.openstack.org/community/

https://github.com/mycozycloud/cozy-setup/blob/master/LICENSE
http://nucivic.com/opencivic/
https://github.com/civic-commons/opencivic
http://openstack.org/
http://www.openstack.org/community/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 31 / 41

Figure 12: OpenStack conceptual architecture35

The OpenStack software supports allocating a large amount of servers to provide resources for
computation. These resources can then be consumed in a uniform manner through the OpenStack
abstraction layer36.

The OpenStack project is provided37 under the open source Apache License 2.0 license38.

4.2.8 Ansible

Ansible39 is a powerful automation engine that makes systems and apps simple to deploy. Ansible is an
IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks
such as continuous deployments or zero downtime rolling updates. There is a large community around
the tool40.

Ansible provides features such as41:

 Command Line Tools

 Application Deployment

 Continuous Delivery

 Multi-Tier Orchestration

 Configuration Management

 Agentless Architecture

35 Figure taken from http://docs.openstack.org/grizzly/openstack-compute/admin/content//conceptual-
architecture.html
36 http://api.openstack.org/api-ref.html
37 https://wiki.openstack.org/wiki/Getting_The_Code
38 https://wiki.openstack.org/wiki/Open
39 http://www.ansibleworks.com/
40 http://www.ansibleworks.com/community/
41 http://www.ansibleworks.com/pricing/

http://docs.openstack.org/grizzly/openstack-compute/admin/content/conceptual-architecture.html
http://docs.openstack.org/grizzly/openstack-compute/admin/content/conceptual-architecture.html
http://api.openstack.org/api-ref.html
https://wiki.openstack.org/wiki/Getting_The_Code
https://wiki.openstack.org/wiki/Open
http://www.ansibleworks.com/
http://www.ansibleworks.com/community/
http://www.ansibleworks.com/pricing/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 32 / 41

 SSH-Based Security

The tool provides a Python API 42 . Modules and plugins can be developed in any programming
language43.

Ansible is available as an open source engine44 released under the GNU General Public License (GPL)
Version 3 license45.

4.2.9 Puppet Open Source

Puppet Open Source46 is a flexible, customizable framework available under the Apache 2.0 license
designed to help system administrators automate the many repetitive tasks they regularly perform. As
such it is similar to Ansible, namely an IT automation tool. It has a large and active community47.

Puppet uses a declarative, model-based approach to IT automation48.

1. Define the desired state of the infrastructure's configuration using Puppet's declarative
configuration language.

2. Simulate configuration changes before enforcing them.

3. Enforce the deployed desired state automatically, correcting any configuration drift.

4. Report on the differences between actual and desired states and any changes made enforcing
the desired state.

Figure 13: How Puppet works49

42 http://docs.ansible.com/developing_api.html
43 http://docs.ansible.com/developing.html
44 https://github.com/ansible/ansible
45 http://www.ansibleworks.com/opensource/
46 http://puppetlabs.com/puppet/puppet-open-source
47 http://puppetlabs.com/community/overview
48 http://puppetlabs.com/puppet/what-is-puppet
49 Figure taken from http://puppetlabs.com/puppet/what-is-puppet

http://docs.ansible.com/developing_api.html
http://docs.ansible.com/developing.html
https://github.com/ansible/ansible
http://www.ansibleworks.com/opensource/
http://puppetlabs.com/puppet/puppet-open-source
http://puppetlabs.com/community/overview
http://puppetlabs.com/puppet/what-is-puppet
http://puppetlabs.com/puppet/what-is-puppet

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 33 / 41

4.2.10 Chef

Chef50 is a systems and cloud infrastructure automation framework that makes it easy to deploy servers
and applications to any physical, virtual, or cloud location, no matter the size of the infrastructure. It is
an IT automation and configuration management tool similar to Ansible and Puppet. It has a large and
active community51.

Figure 14: How Chef works52

Chef relies on reusable definitions known as cookbooks and recipes (see Figure 14) that are written
using the Ruby programming language. Cookbooks and recipes automate common infrastructure tasks.
Their definitions describe what your infrastructure consists of and how each part of your infrastructure
should be deployed, configured and managed. Chef applies those definitions to servers to produce an
automated infrastructure. The Chef server stores your network's configuration data and recipes.

Chef is released under the Apache License Version 2.0 license53.

50 http://docs.opscode.com/chef_overview.html
51 http://community.opscode.com/
52 Figure taken from http://www.getchef.com/chef/
53 https://github.com/opscode/chef/blob/master/LICENSE

http://docs.opscode.com/chef_overview.html
http://community.opscode.com/
http://www.getchef.com/chef/
https://github.com/opscode/chef/blob/master/LICENSE

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 34 / 41

4.2.11 Nagios Core

Nagios Core54 is an open source host, service and network monitoring tool. It allows monitoring entire
IT infrastructures to ensure systems, applications, services, and business processes are functioning
properly. In the event of a failure, it can alert technical staff of the problem, allowing them to begin
remediation processes before outages affect business processes, end users, or customers. It is capable
to manage different types of services and hosts running on different operating systems such as Linux,
Netware, Windows, AIX, etc. It's flexible in configuration and can be extended as much as it is necessary.
It's configured within text files and managed with a Web browser.

Figure 15: Operating principle of Nagios55

Features overview:

 Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)

 Monitoring of host resources (processor load, disk usage, etc.)

 Simple plugin design that allows users to easily develop their own service checks

 Parallelized service checks

 Ability to define network host hierarchy using "parent" hosts, allowing detection of and distinction
between hosts that are down and those that are unreachable

 Contact notifications when service or host problems occur and get resolved (via email, pager,
or user-defined method)

 Ability to define event handlers to be run during service or host events for proactive problem
resolution

 Automatic log file rotation

 Support for implementing redundant monitoring hosts

 Optional web interface for viewing current network status, notification and problem history, log
file, etc.

54 http://www.nagios.com/products/nagioscore/
55 Figure taken from http://en.wikipedia.org/wiki/Nagios

http://www.nagios.com/products/nagioscore/
http://en.wikipedia.org/wiki/Nagios

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 35 / 41

Nagios provides a support forum56 and an exchange site57 for the community. Nagios Core is released
as open source under the GNU General Public License (GPL) Version 2 license58.

4.3 Data Integration Capabilities Solutions

4.3.1 Talend Open Studio for Data Integration

Talend Open Studio for Data Integration59, 60 provides a set of data integration tools to access, transform
and integrate data from any business system in real time or batch to meet both operational and analytical
data integration needs.

The product provides a graphical business modeller tool for designing business logic for data-intensive
applications with data flow sequencing using components and connectors (see Figure 16). The product
provides 450+ native database and storage connectivity components61 that allow users to connect to
almost any data source, including databases and data warehouses such as such as Amazon S3, DB2,
Ingres, JDBC, Microsoft SQL Server, MySQL, Oracle and PostgreSQL.

There is an active community around the tool and the Talend teams are willing to answer any question
on their forum62. The product is released as open source 63 under the GNU Lesser General Public
License (LGPL) Version 3 license64.

Figure 16: Talend Open Studio for Data Integration

56 http://support.nagios.com/forum/
57 http://exchange.nagios.org/
58 http://sourceforge.net/p/nagios/nagioscore/ci/master/tree/LICENSE
59 http://www.talend.com/products/data-integration
60 http://www.talend.com/download/data-integration
61 http://www.talend.com/products/specifications-data-integration
62 http://www.talendforge.org/forum/
63 http://www.talendforge.org/trac/tos/
64 http://www.gnu.org/licenses/lgpl.html

http://support.nagios.com/forum/
http://exchange.nagios.org/
http://sourceforge.net/p/nagios/nagioscore/ci/master/tree/LICENSE
http://www.talend.com/products/data-integration
http://www.talend.com/download/data-integration
http://www.talend.com/products/specifications-data-integration
http://www.talendforge.org/forum/
http://www.talendforge.org/trac/tos/
http://www.gnu.org/licenses/lgpl.html

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 36 / 41

4.3.2 OpenRefine

OpenRefine65 is a tool for working with messy data, cleaning it, transforming it from one format into
another, extending it with Web Services and linking to databases. The main features of the tool are:66

 Importing (formats TSV, CSV, Excel, XML, RDF as XML, JSON, Google Spreadsheets and RDF
N3 triples)

 Filtering and faceting (exploring data by applying multiple filters)

 Editing cells, columns and rows (see Figure 17)

 Editing with Google Refine Regular Expression Language (GREL)67

 Exporting (formats TSV, CSV, Excel, HTML tables and JSON)

 History (undo and redo)

 Reconciliation against FreeBase68 schemas using schema alignment dialogs

 Extending data calling Web Services

Figure 17: Edit cells in OpenRefine – Common transformations69

OpenRefine was originally developed by Google and thus named Google Refine. In July 2010 the
product was renamed OpenRefine as it transitioned to a community-supported product70. OpenRefine
is licensed under an open source Google license71 with dependencies to a number external open source
licenses.

There are several extensions for OpenRefine. Among them, the most relevant for this project would be:

65 http://openrefine.org/
66 https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users
67 https://github.com/OpenRefine/OpenRefine/wiki/Google-refine-expression-language
68 http://www.freebase.com/
69 Figure taken from http://schoolofdata.org/handbook/recipes/cleaning-data-with-refine/
70 http://openrefine.org/community.html
71 https://github.com/OpenRefine/OpenRefine/blob/master/LICENSE.txt

http://openrefine.org/
https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users
https://github.com/OpenRefine/OpenRefine/wiki/Google-refine-expression-language
http://www.freebase.com/
http://schoolofdata.org/handbook/recipes/cleaning-data-with-refine/
http://openrefine.org/community.html
https://github.com/OpenRefine/OpenRefine/blob/master/LICENSE.txt

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 37 / 41

 CKAN storage extension72 which allows RDF data to be registered and uploaded on CKAN
storage.

 RDF Refine73 which is used to reconcile and link data (against SPARQL endpoints, or search
for related RDF datasets) or export data as RDF format.

4.3.3 Karma

Karma74 is an information integration tool that enables users to quickly and easily integrate data from a
variety of data sources including databases, spreadsheets, delimited text files, XML, JSON, KML and
Web APIs. Users integrate information by modelling it according to an ontology of their choice using a
graphical user interface (see Figure 18) that automates much of the process.

Karma learns to recognize the mapping of data to ontology classes and then uses the ontology to
propose a model that ties together these classes. Once the model is complete, users can published the
integrated data as RDF or store it in a database.

Karma is a research prototype developed by the Information Sciences Institute at the University of
Southern California (USC)75 and does not seem to be used by a large community outside of the research
group at USC.

Karma is available as open source76 under the Apache License 2.0 license.

Figure 18: Modelling data in Karma77

4.3.4 Cascading

Cascading78 is an application framework for Java developers to simply develop robust data analytics
and data management applications on Apache Hadoop79. Apache Hadoop is a framework that allows
for the distributed processing of large data sets across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each offering local
computation and storage.

Cascading provides APIs (see Figure 19) for:

 Data processing, enabling complex data flows and data-oriented frameworks.

 Data integration, enabling creation and testing of integration points.

 Process scheduler, allowing scheduling units of work from 3rd party applications.

72 http://lab.linkeddata.deri.ie/2011/grefine-ckan/
73 http://refine.deri.ie/
74 http://www.isi.edu/integration/karma/
75 http://www.isi.edu/integration/
76 https://github.com/InformationIntegrationGroup/Web-Karma
77 Figure taken from https://github.com/InformationIntegrationGroup/Web-Karma/wiki/Modeling-Data
78 http://www.cascading.org/
79 http://hadoop.apache.org/

http://lab.linkeddata.deri.ie/2011/grefine-ckan/
http://refine.deri.ie/
http://www.isi.edu/integration/karma/
http://www.isi.edu/integration/
https://github.com/InformationIntegrationGroup/Web-Karma
https://github.com/InformationIntegrationGroup/Web-Karma/wiki/Modeling-Data
http://www.cascading.org/
http://hadoop.apache.org/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 38 / 41

Community support is provided through a mailinglist, IRC and GitHub80. Cascading is released as open
source under the Apache License 2.0 license81.

Figure 19: Cascading architecture82

4.3.5 Data Pipes

Data Pipes83 is a service to provide streaming, "pipe-like" data transformations on the web – things like
deleting rows or columns, find and replace, head, grep, etc. It provides a REST API that supports the
following data transformation operations:

 none (aka raw) = no transform but file parsed

 csv = parse / render csv

 head = take only first X rows

 tail = take only last X rows

 delete = delete rows

 strip = delete all blank rows

 grep = filter rows based on pattern matching

 cut = select / delete columns

 replace = find and replace (not yet implemented)

 html = render as viewable HTML table

Data Pipes seems like a small tool project developed and used by the Open Knowledge Foundation
Labs (OKFL). Data Pipes is released as open source under the MIT license84.

80 http://www.cascading.org/support/
81 https://github.com/Cascading/cascading/blob/2.5/LICENSE.txt
82 Figure taken from http://www.cascading.org/about-cascading/
83 http://datapipes.okfnlabs.org/
84 https://github.com/okfn/datapipes/blob/master/LICENSE.md

http://www.cascading.org/support/
https://github.com/Cascading/cascading/blob/2.5/LICENSE.txt
http://www.cascading.org/about-cascading/
http://datapipes.okfnlabs.org/
https://github.com/okfn/datapipes/blob/master/LICENSE.md

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 39 / 41

5 Summary and Outlook
This document provided an overview of the DaPaaS Platform, introduced the relevant roles played in
the DaPaaS context and outlined a set of requirements for the DaPaaS Platform from the perspectives
of the key roles. Furthermore, the document focused on the PaaS aspect of the platform and provided
an initial architecture design for the Platform Layer of the DaPaaS Platform. A state-of-the-art overview
of relevant solutions and technologies for the Platform Layer has been presented.

Following the technology evaluation performed as part of this document, the following remarks are to
be considered for the implementation phase of the DaPaaS Platform, with a particular focus on the
Platform Layer:

 Docker is a promising solution to be reused as an application packaging system for DaPaaS. It
has a very active user community and looks like a very promising application container
technology which is used by other open source PaaS solutions such as Cocaine and Deis.

 Docker together with either Cocaine or Deis are promising solutions for the implementation of
the deployment and hosting environment of the Platform Layer. Cocaine and Deis provides the
ability to deploy and run the applications packaged by Docker. Further investigation is needed,
i.e., setting up a test infrastructure and experimenting with writing and deploying sample
applications, to decide which provides the better foundation. There are differences in the
capabilities offered by the two solutions, e.g., Deis provides support for user accounts and SSH
public key for authentication and Cocaine provides a publish-subscribe notification service in
development that one can build on.

 Talend Open Studio for Data Integration and OpenRefine for data cleaning and integration are
promising frameworks for addressing the data integration aspect of the DaPaaS Platform Layer.
However further investigation is needed to see if the tools should be fully integrated, whether
only a useful subset of the functionality are exposed through DaPaaS-developed frontends, or
whether they should be used as inspiration for relevant aspects of the Platform Layer
implementation.

 Ansible, Puppet and Chef are IT automation tools that can be used to administrate and manage
a set of nodes from a single place, typically the Instance Operator. All three have strong
communities and the choice for one of them may depend on the technology choice for the PaaS
solution. For example, the Deis PaaS solution already leverages Chef.

 Nagios Core is a monitoring engine that, with necessary adaptations, is relevant to and may be
used by the Instance Operator to monitor cloud infrastructure resources where the DaPaaS
platform will be deployed.

 DaPaaS-specific extensions to the user management and access control will be implemented
on top of the PaaS solution that is chosen, extending it with user profile, and dataset and app
access control. Application monitoring in DaPaaS will be coupled to user quotas and policies.

 The features offered by OpenCivic should be considered for the implementation of Catalog
features of the Platform Layer. However, since it is based on Drupal which is an open source
content management system tailored for creating websites and not PaaS, the features of
OpenCivic will likely only be an inspiration for the implementation of the Catalog in Platform
Layer.

 For the DaPaaS-specific data workflows services, Cascading is probably too generic for the
needs of DaPaaS. It is unclear if we can easily benefit from it as compared to OpenRefine,
Talend or even Karma, and further investigation is needed to decide on what solutions can be
used for the data workflows.

The above remarks will be taken into consideration for the implementation of the first prototype of the
DaPaaS platform, due at M12. In parallel, we will monitor the development of the integrated DaaS/PaaS
commercial / closed source solutions, in particular Windows Azure Marketplace, Datameer, and Splunk
(briefly introduced in Appendix A).

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 40 / 41

6 Appendix A: Commercial / Closed Source Integrated
DaaS & PaaS Solutions

In this section we briefly introduce some relevant commercial / closed source offerings that fit within the
as-a-service platform for load/store/analysis/visualization/publication of data and development/hosting
of 3rd party apps. Whereas DaPaaS targets an open source environment for data publishing/hosting
and apps development/hosting, the commercial / closed source offerings briefly presented here cover
functionalities that are relevant to the overall requirements outlined at the beginning of this document.

6.1 Datameer

Datameer (http://www.datameer.com) was founded in 2009 by some of the original contributors to
Apache Hadoop, which is an open source software framework for storage and large-scale processing
of datasets. Datameer provides analytics software (see http://www.datameer.com/product/) on top of the
Hadoop framework that allows to integrate, analyze and visualize data. The software application comes
in three versions: 1) use on your desktop computer, 2) install on your infrastructure as a server, 3) use
a provided enterprise instance with your data.

Datameer is an analytics application natively built on Hadoop, focused on leveraging the linear scalability
and flexibility of Hadoop for data analytics. Its product is focused on data integration (structured such as
relational data, tabular, etc, as well as unstructured data such as social data, email, log files, etc.), multi-
device drag-and-drop-style data visualization, and data management (data import, export, data links,
storage, data partitioning, compression, etc.).

Datameer is built on open standards/technologies, with a focus on Hadoop and HTML5. It offers
extensibility features in the form of plugins. Datameer includes an SDK for writing custom plugins for
import, export, functions, and visualizations (documentation is available at
http://documentation.datameer.com/documentation/). Datameer's components are exposed through
REST APIs.

Datameer provides an applications market at http://www.datameer.com/apps. At time of this writing the
application store consists of 48 apps.

6.2 Splunk

Splunk (http://www.splunk.com) shipped its first software in 2006 designed to manage unstructured data
generated by machines (websites, applications, servers, networks, mobile devices, sensors and RFID
assets). The Splunk Enterprise software product provides features for collecting and indexing any
machine data, including the capability to handle massive live datastreams, statistical analysis and real-
time dashboards. The software can also be provides as a Software-as-a-Service in the Cloud. This
version of the product is named Splunk Cloud. The company also provides a software product named
Hunk for analyzing and visualizing data in Hadoop.

Splunk was initially developed to allow organizations to search and analyze data generated by
applications, servers and network devices in IT infrastructures. It includes capabilities for developing
applications and provides an applications store at http://apps.splunk.com/. At time of this writing the
application store consists of 488 apps.

6.3 Windows Azure Marketplace

Windows Azure Marketplace (http://datamarket.azure.com/), supported by Microsoft, is an “online
market for customers and partners to share, buy, and sell finished Software-as-a-Service applications,
building block components and premium datasets.” The marketplace comes with a set of APIs targeted
at developers to work with datasets in the same way on many different platforms, enabling the
developers to develop applications for desktop, Web, mobile, and other clients. The marketplace also
offers developers common security, billing, auditing, and authentication mechanisms. At time of this

http://www.datameer.com/
http://www.datameer.com/product/
http://documentation.datameer.com/documentation/
http://www.datameer.com/apps
http://www.splunk.com/
http://apps.splunk.com/
http://datamarket.azure.com/

Deliverable D2.1: Open PaaS requirements,
design & architecture specification

Dissemination level: PU

 Copyright  DaPaaS Consortium 2013-2015 Page 41 / 41

writing the application store consists of 644 apps. Further info about the Windows Azure Marketplace
can be found in Deliverable D1.1.

6.4 GoodData

GoodData (http://www.gooddata.com/) offers a business intelligence platform. It provides support for
extract, transform and load (ETL) processes, connectors to various data sources, scalable data storage,
a data analytics engne, reporting and various forms of data visualization.

GoodData was primarily designed for the cloud and is built on technologies such as Vertica, MongoDB,
Cassandra, NetApp, and Rackspace.

GoodData is an open platform in the sense that it can be embedded in existing applications, or allows
applications to be built on top of the platform, through a set of RESTful APIs.

6.5 Tableau Software

Tableau software (http://www.tableausoftware.com) provides a set of interactive data visualization
products focused on business intelligence, ranging from desktop to hosted solutions. The focus of
Tableau is on providing usability and ease of use for its software for business intelligence with a strong
emphasis on the data visualization capabilities. Tableau offers four main products: Tableau Desktop,
Tableau Server, Tableau Online, and Tableau Public.

Tableau Desktop is a drag&drop-style data analysis and visualization desktop tool. It provides data
connection capabilities, data visualization, and creation of interactive dashboards.

Tableau Server is a business intelligence application that provides browser-based analytics. It comes
with a Web-based dashboard where users can import and integrate data, and analyse and visualize it.

Tableau Online is a hosted version of Tableau Server. It provides a central place to manage data, data
sources and metadata, and focuses on scalability.

Tableau Public is delivered as a service and aims at creating interactive visuals and publishing them
without the help of programmers or IT. It targets organizations that want to enhance their websites with
interactive data visualizations. It offers carious visualization types, such as maps, bar and line charts,
lists, heat maps, etc.

6.6 Infochimps

Infochimps (http://www.infochimps.com/) provides a managed cloud service called Infochimps Cloud
(http://www.infochimps.com/infochimps-cloud/overview/) that streamlines building and managing
complex Big Data environments, and aims to make it faster and less complex to develop and deploy Big
Data applications. The platform provides capabilities for data streaming, storage, queries and
administration.

http://www.gooddata.com/
http://www.tableausoftware.com/
http://www.infochimps.com/
http://www.infochimps.com/infochimps-cloud/overview/

